

THE EXPERT’S VOICE® IN OPEN SOURCE

Pro

PHP and
jQuery

Jason Lengstorf

Add quick, smooth, and easy interactivity
to your PHP sites with jQuery

 
 

 
 
 

   

Pro PHP and jQuery

■ ■ ■

JASON LENGSTORF

Pro PHP and jQuery

Copyright © 2010 by Jason Lengstorf

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2847-9

ISBN-13 (electronic): 978-1-4302-2848-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Technical Reviewer: Robert Banh
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Patrick Meader and Heather Lang
Compositor: Kimberly Burton
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

For Nate. It's 2-1 now.

 iv

Contents at a Glance

■About the Author ... xii

■About the Technical Reviewer.. xiii

■Acknowledgements .. xiv

■PART 1: Getting Comfortable with jQuery..1

■Chapter 1: Introducing jQuery ...3

■Chapter 2: Common jQuery Actions and Methods ...25

■PART 2: Getting Into Advanced PHP Programming ...85

■Chapter 3: Object-Oriented Programming ...87

■Chapter 4: Build an Events Calendar ...119

■Chapter 5: Add Controls to Create, Edit, and Delete Events167

■Chapter 6: Password Protecting Sensitive Actions and Areas199

■PART 3: Combining jQuery with PHP Applications ..233

■Chapter 7: Enhancing the User Interface with jQuery ..235

■Chapter 8: Editing the Calendar with AJAX and jQuery...263

■PART 4: Advancing jQuery and PHP...309

■Chapter 9: Performing Form Validation with Regular Expressions311

■Chapter 10: Extending jQuery..345

■ Index...361

 v

Contents

■About the Author ... xii

■About the Technical Reviewer .. xiii

■Acknowledgements .. xiv

■PART 1: Getting Comfortable with jQuery..1

■Chapter 1: Introducing jQuery ...3

Choosing jQuery over JavaScript ...3

Understanding JavaScript Libraries ... 3

Understanding the Benefits of jQuery... 4

Understanding the History of jQuery... 4

Setting Up a Testing Environment ...4

Installing Firefox ... 5

Installing Firebug.. 5

Including jQuery in Web Pages ..7

Including a Downloaded Copy of the jQuery Library... 7

Including a Remotely Hosted Copy of the jQuery Library ... 8

Using the Google AJAX Libraries API .. 8

Setting up a Test File ...8

Introducing the jQuery Function ($) .. 9

Selecting DOM Elements Using CSS Syntax ... 10

Summary ...23

■Chapter 2: Common jQuery Actions and Methods ...25

Understanding the Basic Behavior of jQuery Scripts ...25

■ CONTENTS

 vi

Understanding jQuery Methods ...25

Traversing DOM Elements .. 26

Creating and Inserting DOM Elements.. 36

Accessing and Modifying CSS and Attributes... 53

Affecting Result Sets .. 62

Using Animation and Other Effects... 65

Handling Events.. 71

Using AJAX Controls ... 78

Summary ...84

■PART 2: Getting Into Advanced PHP Programming ...85

■Chapter 3: Object-Oriented Programming ...87

Understanding Object-Oriented Programming...87

Understanding Objects and Classes ..87

Recognizing the Differences Between Objects and Classes .. 88

Structuring Classes .. 88

Defining Class Properties ... 89

Defining Class Methods.. 90

Using Class Inheritance .. 99

Assigning the Visibility of Properties and Methods .. 103

Commenting with DocBlocks.. 110

Comparing Object-Oriented and Procedural Code...112

Ease of Implementation.. 112

Better Organization... 117

Easier Maintenance .. 117

Summary ...117

■Chapter 4: Build an Events Calendar ...119

Planning the Calendar..119

Defining the Database Structure .. 119

■ CONTENTS

vii

Creating the Class Map .. 119

Planning the Application’s Folder Structure ... 120

Modifying the Development Environment... 122

Building the Calendar ..124

Creating the Database .. 124

Connecting to the Database with a Class ... 125

Creating the Class Wrapper.. 127

Adding Class Properties ... 127

Building the Constructor... 129

Loading Events Data... 136

Outputting HTML to Display the Calendar and Events .. 143

Outputing HTML to Display Full Event Descriptions.. 160

Summary ...166

■Chapter 5: Add Controls to Create, Edit, and Delete Events167

Generating a Form to Create or Edit Events...167

Adding a Token to the Form ... 169

Creating a File to Display the Form .. 171

Adding a New Stylesheet for Administrative Features ... 172

Saving New Events in the Database ..176

Adding a Processing File to Call the Processing Method ... 179

Adding a Button to the Main View to Create New Events ... 181

Adding Edit Controls to the Full Event View...185

Modifying the Full Event Display Method to Show Admin Controls .. 187

Adding the Admin Stylesheet to the Full Event View Page... 188

Deleting Events ..190

Generating a Delete Button .. 191

Creating a Method to Require Confirmation ... 192

Creating a File to Display the Confirmation Form... 195

■ CONTENTS

 viii

Summary ...198

■Chapter 6: Password Protecting Sensitive Actions and Areas199

Building the Admin Table in the Database...199

Building a File to Display a Login Form ...200

Creating the Admin Class ..202

Defining the Class... 202

Building a Method to Check the Login Credentials... 203

Modifying the App to Handle the Login Form Submission.. 213

Allowing the User to Log Out ...218

Adding a Log Out Button to the Calendar ... 218

Creating a Method to Process the Logout .. 220

Modifying the App to Handle the User Logout .. 221

Displaying Admin Tools Only to Administrators ...223

Showing Admin Options to Administrators... 223

Limiting Access to Administrative Pages ... 228

Summary ...231

■PART 3: Combining jQuery with PHP Applications ..233

■Chapter 7: Enhancing the User Interface with jQuery ..235

Adding Progressive Enhancements with jQuery ..235

Setting Progressive Enhancement Goals.. 236

Include jQuery in the Calendar App ...236

Create a JavaScript Initialization File ... 237

Creating a New Stylesheet for Elements Created by jQuery... 238

Creating a Modal Window for Event Data ..240

Binding a Function to the Click Event of Title Links ... 240

Preventing the Default Action and Adding an Active Class... 240

Extracting the Query String with Regular Expressions... 241

■ CONTENTS

ix

Creating a Modal Window... 243

Retrieve and Display Event Information with AJAX .. 247

Add a Close Button ... 253

Add Effects to the Creation and Destruction of the Modal Window.. 254

Summary ...262

■Chapter 8: Editing the Calendar with AJAX and jQuery263

Opening the Event Creation Form ..263

Adding an AJAX Call to Load the Form ... 264

Modifying the AJAX Processing File to Load the Form... 265

Making the Cancel Button Behave Like the Close Button... 268

Saving New Events in the Database ..269

Modifying the AJAX Processing File to Handle New Submissions ... 271

Adding Events Without Refreshing ..273

Deserializing the Form Data ... 274

Creating Date Objects... 279

Appending the Event to the Calendar ... 283

Getting the New Event’s ID ... 286

Editing Events in a Modal Window...290

Determining the Form Action.. 291

Storing the Event ID if One Exists ... 292

Remove Event Data from the Modal Window ... 294

Ensuring Only New Events Are Added to the Calendar... 296

Confirming Deletion in a Modal Window..298

Displaying the Confirmation Dialog .. 298

Configuring the Form Submission Event Handler for Deletion ... 301

Remove the Event from the Calendar After Deletion .. 304

Summary ...307

■PART 4: Advancing jQuery and PHP...309

■ CONTENTS

 x

■Chapter 9: Performing Form Validation with Regular Expressions311

Getting Comfortable with Regular Expressions ...311

Understanding Basic Regular Expression Syntax ... 311

Drilling Down on the Basics of Pattern Modifiers ... 316

Getting Fancy with Backreferences.. 318

Matching Character Classes... 320

Finding Word Boundaries ... 323

Using Repetition Operators... 323

Detecting the Beginning or End of a String .. 324

Using Alternation .. 324

Using Optional Items... 325

Putting It All Together... 326

Adding Server-Side Date Validation...328

Defining the Regex Pattern to Validate Dates... 328

Adding a Validation Method to the Calendar Class... 333

Returning an Error if the Dates Don’t Validate.. 334

Adding Client-Side Date Validation ..338

Creating a New JavaScript File to Validate the Date String.. 338

Including the New File in the Footer... 339

Preventing the Form Submission if Validation Fails ... 339

Summary ...343

■Chapter 10: Extending jQuery ..345

Adding Functions to jQuery..345

Adding Your Date Validation Function to jQuery ... 345

Modifying the Include Script... 348

Modifying the Initialization Script ... 348

Adding Methods to jQuery ...350

■ CONTENTS

xi

Building Your Plugin ... 351

Implementing Your Plugin .. 357

Summary ...360

■ Index...361

 xii

About the Author

■ Jason Lengstorf is a web designer and developer based in Big Sky
country. He specializes in content management software using PHP,
MySQL, AJAX, and web standards.

He spends most of his time running Ennui Design: a collection of
web designers and developers from all over the world specializing in
premium custom websites. In his off hours, he runs a clothing
company called Humblecock™ and tries to make time for hobbies
including golf, travel, and hunting down new beers.

xiii

About the Technical Reviewer

� Robert Banh is an accomplished developer, working in
code since the existence of Pluto. He's known for hacking core
systems and deploying websites over the weekends. He
specializes in building custom PHP/MySQL web applications
using technologies such as Zend framework and CodeIgniter.
Depending on the project, he’s known to jump from content
management systems of Wordpress, Drupal, and Expression
Engine to e-commerce solutions of Magento and Shopify.
When he's not coding, he's playing with Adobe Photoshop
and aligning hand drawn boxes into a 960 grid. He also
dreams in hex colors.
 His passion lives on the web, designing and building
custom solutions for clients stemming from IBM, HP, Unisys,

and KLRU, to small mom and pop shops and non-profit organizations. He is currently employed at the
University of Texas at Austin where they let him run free and code in multiple frameworks and
experiment taking over the world with unorthodox designs for the web.

 Robert has a Computer Science degree from the University of Texas at Austin. If he's not
mentoring or tweeting, you can find him attending Refresh Austin each month.

 xiv

Acknowledgments

I feel like I should probably thank Robert Banh, Michelle Lowman, and Anita Castro first. They put up
with my insane schedule, inability to make up my mind about the book's content, and my general
scattered work habits.

Mom and Dad, I've said it before, but thanks for everything. I couldn't have done it if you hadn't
been willing to put up with my many identity crises.

Nate, you keep me motivated, as usual, by continually doing cooler things than I'm doing. Kyle,
Scott, Mike, Harris, Rhino, Amie, Shannon: thanks for forcing me to be social and leave the house every
once in a while. Checkers, thanks for setting up the tee times.

Of course, I need to thank Drew, Henry, and Tom for joining the Ennui Design team and allowing
me to take the time to write. It's great to have people with whom I can bounce ideas around; you
probably don't know how much it means to me to have people around who understand what I'm talking
about (and, more importantly, actually care about the subject matter).

To Peter, Rose, Molly, Lucy, Kathryn, Jenna, and the rest of the girls at Caffé Dolcé, you're as
responsible for this book reaching completion as I am. Thanks for remembering my order on days I was
too frazzled to articulate.

Everyone at the Montana Programmers meetups — Ian Merwin, Wes Hunt, Monica Ray, Nathan
and Jennifer Stephens, Christopher Cable, Ashton Sanders, Andy Laken, Scott Rouse, Nora McDougall-
Collins, and everyone whose name escapes me right now — I have more fun at those meetups than I do
at most gatherings. Thanks for showing up and proving that even Montana can have a developers'
community.

And of course, to the online community — Rob MacKay, Andrea La Valleur, Mike Conaty, Chris
Coyier, Paul Barrick, Brenley Dueck, Bill Joseph, Brad Smith, the DCTH crew — thanks for providing a
welcome distraction when I needed a minute, sharing insight, and reminding me that there are geeks
everywhere; you just don't see us because we're all inside on the computer.

P A R T 1
■ ■ ■

Getting Comfortable with
jQuery

In the first part of this book, you’ll be getting familiar with the history and basic

capabilities of jQuery. By the end of this section, you will have a general grasp on the

overarching concepts behind jQuery, and—after you’ve revisited object-oriented PHP

in Part 2—you’ll be ready to tackle the exercises in Part 3 (where you actually start

building a real-world project with jQuery and PHP).

C H A P T E R 1

■ ■ ■

3

Introducing jQuery

To fully understand jQuery and its applications in modern web programming, it's important to take a
moment and look back at where jQuery came from, what needs it was built to fill, and what
programming in JavaScript was like before jQuery came around.

In this chapter you'll learn about JavaScript libraries and the needs they seek to fulfill, as well as why
jQuery is the library of choice for the majority of web developers. You'll also learn the basics of jQuery,
including how to make the library available for use in your applications and how the core of jQuery—its
powerful selector engine—works.

Choosing jQuery over JavaScript
JavaScript has a reputation for being rather unwieldy in web applications. A lack of consistent browser
support, difficult debugging, and an intimidating syntax can make learning JavaScript feel impossible.

To be fair, all the things that make JavaScript seem difficult are part of what make it so powerful, but
that doesn't make it any more inviting to a novice web developer looking to add JavaScript to his arsenal.

Understanding JavaScript Libraries
The steep learning curve associated with JavaScript has been a sore spot for developers for years, and as
frustrations grew, several ambitious developers started building JavaScript libraries, also referred to as
JavaScript frameworks.

These libraries aimed to simplify the use of JavaScript to make it more accessible to both new and
existing developers by creating easy-to-use control functions that remove some of the heavy lifting from
everyday JavaScript tasks. Libraries are especially useful in the realm of Asynchronous JavaScript and
XML (AJAX) due to the complexity of performing the same tasks using straight JavaScript.

JavaScript libraries aim to provide a simpler syntax for common tasks, which translates to a faster
workflow for developers and a less intimidating learning curve for beginners. They also eliminate some
of the headache involved in coding cross-browser JavaScript by doing all the compatibility checks for
you within their built-in methods, which is a huge time-saver when coding.

CHAPTER 1 ■ INTRODUCING JQUERY

4

■ Note The difference between using jQuery's AJAX tools versus the straight JavaScript method will be explored
later on in Chapter 2.

A good number of JavaScript libraries are available. Several of the most popular currently in use are
Prototype (http://www.prototypejs.org), MooTools (http://mootools.net), Yahoo! UI Library
(http://developer.yahoo.com/yui), and the focus of this book, jQuery.

Understanding the Benefits of jQuery
Every JavaScript framework has its own benefits; jQuery is no exception, providing the following
benefits:

• Small file size (approximately 23KB as of version 1.4)

• Extremely simple syntax

• Chainable methods

• Easy plug-in architecture for extending the framework

• A huge online community

• Great documentation at http://api.jquery.com

• Optional extensions of jQuery for added functionality, such as jQueryUI

Understanding the History of jQuery
The brain child of developer John Resig jQuery was first announced at BarCamp NYC in early 2006 (for
more on BarCamp, see http://barcamp.org). Resig noted on his web site, that he created jQuery because
he was unhappy with the currently available libraries and felt that they could be vastly improved by
reducing “syntactic fluff” and adding specific controls for common actions
(http://ejohn.org/blog/selectors-in-javascript/).

jQuery was a big hit in the development community and quickly gained momentum. Other
developers came on to help refine the library, ultimately resulting in the first stable release of jQuery,
version 1.0, on August 26, 2006.

Since then, jQuery has progressed to version 1.4.2 (at the time of this writing) and has seen a huge
influx of plug-ins from the development community. A plug-in is an extension of jQuery that isn’t part of
the core library. You'll learn more about (and build) jQuery plug-ins in Chapter 10.

Setting Up a Testing Environment
Because there’s no better way to understand a new language than to just get your hands dirty, you’ll
need a testing environment to try out some introductory exercises with jQuery. Fortunately, setting up
this testing environment is a simple two-step process: install Firefox, and install Firebug.

http://www.prototypejs.org
http://mootools.net
http://developer.yahoo.com/yui
http://api.jquery.com
http://barcamp.org
http://ejohn.org/blog/selectors-in-javascript

CHAPTER 1 ■ INTRODUCING JQUERY

5

Throughout this book, all exercises will assume that you are using the Firefox browser with the
Firebug plug-in due to its excellent JavaScript testing console.

Installing Firefox
To get Firefox up and running on your computer, navigate to http://firefox.com and download the
latest version of Firefox (version 3.6 at the time of this writing). After running the installer (Firefox Setup
x.x.x.exe on a PC or Firefox x.x.x.dmg on Mac), Firefox will be running.

Installing Firebug
To install Firebug, use Firefox to navigate to http://getfirebug.com, and click the “Install Firebug x.x for
Firefox” button. This takes you to the Firefox add-ons directory entry for Firebug. Once there, click the
“Add to Firefox” button, which will bring up the installation dialog in the browser (see Figure 1-1). Click
Install Now, and wait for the add-on to install. Then restart Firefox.

Figure 1-1. The installation dialog for Firebug

http://firefox.com
http://getfirebug.com

CHAPTER 1 ■ INTRODUCING JQUERY

6

After restarting Firefox, an icon will appear in the status bar that looks like a lightning bug. Clicking
that icon will bring up the Firebug controls, starting with the console (see Figure 1-2).

Figure 1-2. The Firebug add-on opens to the console panel

■ Note Firebug is useful for much more than JavaScript debugging. It's an invaluable addition to any web
developer's arsenal. To learn more, visit http://getfirebug.com.

http://getfirebug.com

CHAPTER 1 ■ INTRODUCING JQUERY

7

SETTING UP A LOCAL TESTING ENVIRONMENT

Though setting up a local testing environment is not required for the exercises presented in this book,
doing so is a good development practice. Testing locally allows for quicker, more secure development and
is generally easier than trying to develop on a remote server.

Installing XAMPP

To quickly and easily set up a local development environment on your computer, download and install
XAMPP using the following steps:

1. Visit http://www.apachefriends.org/en/xampp.html, and download the latest version of XAMPP
for your operating system.

2. Open the downloaded file. For a PC, run the EXE file, select a directory, and install. For a Mac, mount
the DMG, and drag the XAMPP folder into your Applications folder.

3. Open the XAMPP Control Panel in the XAMPP folder, and start Apache.

4. Navigate to http://localhost/ to ensure than XAMPP is working. If so, the XAMPP home page will
let you know.

In addition to the Windows and Mac versions of XAMPP, there are distributions for Linux and Solaris. Each
operating system has quirks when installing XAMPP, so refer to the help section for additional information
on getting a local testing environment running on your machine.

Including jQuery in Web Pages
To use jQuery in a project, the library needs to be loaded in your HTML document to give your script
access to the library’s methods. If the library is not loaded first, any scripts using jQuery syntax will likely
result in JavaScript errors. Fortunately, loading jQuery is very simple, and there are several options
available to developers to do so.

Including a Downloaded Copy of the jQuery Library
The first option for including jQuery in a project is to save a copy of the library within your project’s file
structure and include it just like any other JavaScript file:

<script type="text/javascript" src="js/jquery-1.4.2.min.js"></script>

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://localhost

CHAPTER 1 ■ INTRODUCING JQUERY

8

Including a Remotely Hosted Copy of the jQuery Library
The second option is to include a copy of the jQuery library hosted on Google Code. This is done in the
hopes that visitors to your web site will have a copy of the library already cached from another site
including the same file, which decreases load time for your site’s users.

The remote copy is included just like the downloaded copy:

<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">
</script>

Using the Google AJAX Libraries API
Google Code also offers an option for loading jQuery called the AJAX Libraries API (see
http://code.google.com/apis/ajaxlibs). In Google’s words, “The AJAX Libraries API is a content
distribution network and loading architecture for the most popular, open source JavaScript libraries.”

Using the AJAX Libraries API is simple and straightforward, and this is method that will be used
throughout this book. To include jQuery in your web site using the AJAX Libraries API, use the following
snippet:

<script type="text/javascript"
 src="http://www.google.com/jsapi"></script>
<script type="text/javascript">
 google.load("jquery", "1.4.2");
</script>

Setting up a Test File
Now that your testing environment is set up, create a new folder in the htdocs folder within your XAMPP
installation called testing, and create a new file inside it called index.html. In the editor of your choice,
insert the following HTML markup:

<!DOCTYPE html>
<html>
<head>
 <title>Testing jQuery</title>
</head>
<body>
 <p>Hello World!</p>
 <p class="foo">Another paragraph, but this one has a class.</p>
 <p>This is a span inside a paragraph.</p>
 <p id="bar">Paragraph with an id.
 And this sentence is in a span.
 </p>

 <script type="text/javascript"
 src="http://www.google.com/jsapi"></script>
 <script type="text/javascript">

http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js
http://code.google.com/apis/ajaxlibs
http://www.google.com/jsapi
http://www.google.com/jsapi

CHAPTER 1 ■ INTRODUCING JQUERY

9

 google.load("jquery", "1.4.2");
 </script>
</body>
</html>

■ Note Loading the JavaScript right before the closing body tag (</body>) is done to keep the scripts from
blocking other page elements, such as images, from loading. Doing so also prevents JavaScript from running
before the elements are fully loaded on the page, which can result in unexpected behavior or JavaScript errors.

Save this file and navigate to http://localhost/testing/ in Firefox (see Figure 1-3).

Figure 1-3. Our test file loaded in Firefox

You’ll be using this file to get your feet wet with the basic operations of jQuery.

Introducing the jQuery Function ($)
At the core of jQuery is the jQuery function. This function is the heart and soul of jQuery and is used in
every instance where jQuery is implemented. In most implementations of jQuery, the shortcut $() is
used instead of jQuery() to keep the code concise.

We won’t get too deep into the programming theory that makes this function tick, but it basically
creates a jQuery object and evaluates the expression passed as its parameters. It then determines how it
should respond and modifies itself accordingly.

http://localhost/testing

CHAPTER 1 ■ INTRODUCING JQUERY

10

■ Caution Certain other JavaScript libraries also use the $() function, so conflicts may occur when attempting to
use multiple libraries simultaneously. jQuery provides a fix for this situation with jQuery.noConflict(). For more
information, see http://docs.jquery.com/Core/jQuery.noConflict.

Selecting DOM Elements Using CSS Syntax
Everything in jQuery revolves around its incredibly powerful selector engine. The rest of this chapter

teaches you the different methods with which you can select elements from the Document Object Model

(DOM) using jQuery.

■ Note The DOM is a collection of objects and nodes that make up HTML, XHTML, and XML documents. It is
platform-and language-independent—this essentially means that developers can use a variety of programming
languages (such as JavaScript) to access and modify DOM information on multiple platforms (such as web
browsers) without compatibility issues.

One of the strongest and most alluring features of jQuery is the ease with which a developer is able to
select elements within the DOM. The use of pseudo-CSS selectors1 adds an incredible level of power to
jQuery. Pseudo-CSS allows a developer to target specific instances of elements in his HTML. This is
especially helpful to anyone with prior experience with CSS due to the nearly identical syntax.
Essentially, using the same CSS syntax you would use to set up style rules, you’re able to select elements
in the following ways:

• Basic selectors

• Hierarchy selectors

• Filters

• Basic filters

• Content filters

• Visibility filters

• Attribute filters

• Child filters

• Form filters

1 http://www.w3schools.com/CSS/css_pseudo_classes.asp

http://docs.jquery.com/Core/jQuery.noConflict
http://www.w3schools.com/CSS/css_pseudo_classes.asp

CHAPTER 1 ■ INTRODUCING JQUERY

11

Basic Selectors
The basic selectors allow developers to select elements by tag type, class name, ID, or any combination
thereof. While viewing http://localhost/testing/, launch the Firebug dialog, and click the Console tab
(see Figure 1-4). If the Console panel is disabled, click the Console tab, and select Enabled. You will be
using this console for all examples in this chapter.

■ Note If you’re familiar with CSS, you will be able to skim this section, because the selectors behave the same
as their CSS counterparts.

Selecting Elements by Tag Type

To select an element by tag type, simply use the name of the tag (such as p, div, or span) as your selector:

element

To select all paragraph (<p>) tags in our test document, enter the following snippet at the bottom of
the console:

$("p");

Press Enter and the code will execute. The following results will be displayed in the console (see
Figure 1-4):

>>> $("p");
[p, p.foo, p, p#bar]

The first line shows the command that was executed, and the second line shows what was returned

from the code. There are four paragraph tags in our test document: two without class or ID attributes,
one with a class foo, and one with an ID bar (you’ll learn about this syntax in the next sections). When we
pass the tag name to the jQuery function, all instances are found and added to the jQuery object.

http://localhost/testing

CHAPTER 1 ■ INTRODUCING JQUERY

12

Figure 1-4. The Firebug console after executing a command

Selecting Tags by Class Name

Just as quickly as you can select by tag type, you can select elements by their assigned class or classes.
The syntax for this is the use the class name preceded by a period (.):

.class

Select all the elements with the class foo by executing the following snippet in the console:

$(".foo");

After execution, the following will show up in the console:

>>> $(".foo");
[p.foo, span.foo]

Both a paragraph tag and a span are returned, since they both have the class foo.

Selecting Elements by ID

To select an element by its id attribute, the CSS syntax of the id preceded by a hash sign (#) is used.

#id

Match all elements with an ID of bar with the following:

$("#bar");

CHAPTER 1 ■ INTRODUCING JQUERY

13

Only one paragraph in our document has an id of "bar", as we see in the result:

>>> $("#bar");
[p#bar]

Combining Selectors for More-Precise Selection

In some situations, it may be necessary to isolate only certain tags that correspond to a class, which is
easy to do by combining tag type and class in your selector.

Enter the following in the console to select only paragraph tags with the class foo:

$("p.foo");

The results in the console confirm that the span was ignored, even though it has the class foo:

>>> $("p.foo");
[p.foo]

Using Multiple Selectors

In the event that you need to access multiple elements, multiple selectors can be used to access all of
those elements at once. For instance, if you wanted to select any paragraph tag with a class of foo or any
element with an ID of bar, you would use the following:

$("p.foo,#bar");

This returns elements that match at least one selector specified in |the string:

>>> $("p.foo,#bar");
[p.foo, p#bar]

Hierarchy Selectors
Sometimes, it’s not enough to be able to select by element, class, or ID. There are points at which you’ll
need to access elements contained within, next to, or after another element, such as removing an active
class from all menu items except the one that was just clicked, grabbing all the list items out of the
selected unordered list, or changing attributes on the wrapper element when a form item is selected.

Selecting Descendant Elements

Selecting descendant elements, which are elements contained within other elements, is done using the
ancestor selector followed by a space and the descendant selector.

ancestor descendent

CHAPTER 1 ■ INTRODUCING JQUERY

14

To select descendant spans in your test document, execute the following command in the Firebug
console:

$("body span");

This will find all spans contained within the body tag (<body>) of the document, even though the
spans are also inside paragraph tags.

>>> $("body span");
[span, span.foo]

Selecting Child Elements

Child elements are a more-specific style of descendant selector. Only the very next level of element is
considered for matching. To select a child element, use the parent element followed by a greater than (>)
symbol, followed by the child element to match:

parent>child

In your test file, try to select any spans that are child elements of the body element by entering the
following command in the console:

$("body>span");

Because there are no spans directly contained within the body element, the console will output the
following:

>>> $("body>span");
[]

Next, filter all span elements that are direct children of a paragraph element:

$("p>span");

The resulting output looks like this:

>>> $("p>span");
[span, span.foo]

Selecting Next Elements

Occasionally in a script, you’ll need to select the next element in the DOM. This is accomplished by
providing an identifier for the starting element (any selector pattern works here), followed by a plus sign
(+), followed by the selector to match the next instance of:

start+next

Try this in the console by typing the following command:

CHAPTER 1 ■ INTRODUCING JQUERY

15

$(".foo+p");

There is only one element with the class foo, so only one paragraph element is returned:

>>> $('.foo+p');
[p]

Next, use a more general query, and select the next paragraph element after any paragraph element:

$('p+p');

There are four paragraphs in our markup, and all of them but the last have a next paragraph, so the
console will display three elements in the result:

>>> $('p+p');
[p.foo, p, p#bar]

This result set is the second, third, and fourth paragraphs from the HTML markup.

Selecting Sibling Elements

Sibling elements are any elements contained within the same element. Selecting sibling elements works
similarly to selecting next elements, except the sibling selector will match all sibling elements after the
starting element, rather than just the next one.

To select sibling elements, use the starting element selector, followed by an equivalency sign (~),
and the selector to match sibling elements with:

start~siblings

To match all siblings after the paragraph with class foo, execute the following command in the
console:

$(".foo~p");

The result set will look like the following:

>>> $(".foo~p");
[p, p#bar]

Basic Filters
Filters are another very powerful method of accessing elements in the DOM. Instead of relying on
element types, classes, or IDs, you’re able to find elements based on their position, current state, or
other variables.

The basic syntax of a filter is a colon (:) followed by the filter name:

:filter

CHAPTER 1 ■ INTRODUCING JQUERY

16

In some filters, a parameter can be passed in parentheses:

:filter(parameter)

The most common and useful filters are covered in the next few sections.

■ Note Not all available filters are covered here for the sake of getting into actual development quickly. For a
complete listing of available filters, see the jQuery documentation.

Selecting First or Last Elements

One of the most common uses of filters is to determine if an element is the first or last element in a set.
With filters, finding the first or last element is incredibly simple; just append the filter :first or :last to
any selector:

$("p:last");

This returns the following when executed in the console:

>>> $("p:last");
[p#bar]

Selecting Elements that Do Not Match a Selector

If you need to find all elements that don't match a selector, the :not() filter is the easiest way to go about
it. Append this filter to your selector along with a selector as its parameter, and the results set will return
any elements that match the original selector, but not the selector passed as a parameter to :not().

For example:

$("p:not(.foo)");

Will return the following result set:

>>> $("p:not(.foo)");
[p, p, p#bar]

Selecting Even or Odd Elements

Similar to :first and :last, the :even and :odd filters are syntactically simple and return exactly what
you might expect: the even or odd elements from a result set, respectively.

$("p:odd");

Executing the preceding line in the console will result in the following output:

CHAPTER 1 ■ INTRODUCING JQUERY

17

>>> $("p:odd");
[p.foo, p#bar]

Selecting Elements by Index

In the event that you need to grab a particular element by its index, the :eq() filter allows you to specify
which element is needed by passing an index as the filter’s parameter:

$("p:eq(3)");

This outputs the following:

>>> $("p:eq(3)");¸
[p#bar]

■ Note An element's index refers to its position among other elements in the set. Counting in programming starts
a zero (0), so the first element is at index 0; the second is at index 1, and so on.

Content Filters
Filters are also available to select elements based on their content. These can range from containing
certain text to surrounding a given element.

Selecting Elements That Contain Certain Text

To select only elements that contain certain text, use the :contains() filter, where the text to be matched
is passed as a parameter to the filter:

$("p:contains(Another)");

When executed in the console, the preceding line will return the following:

>>> $("p:contains(Another)");
[p.foo]

■ Note The :contains() filter is case sensitive, meaning capitalization matters for matching text. A case-
insensitive version of the filter has been added to the comments of the :contains() entry on the API

CHAPTER 1 ■ INTRODUCING JQUERY

18

documentation by a member of the development community. For more on this filter, see
http://api.jquery.com/contains-selector.

Selecting Elements That Contain a Certain Element

If you need to select only elements that contain another element, you would use the :has() filter. This
works similarly to :contains(), except it accepts an element name instead of a string of text:

$("p:has(span)");

When executed in the console, this outputs the following:

>>> $("p:has(span)");
[p, p#bar]

Only paragraphs containing span elements are returned.

Selecting Elements That Are Empty

To find elements that are empty (meaning the element contains neither text nor any other elements),
the :empty filter comes into play.

In the HTML example you’re using, the only empty elements are not visible. Select them by looking
for any empty element:

$(":empty");

This outputs the following:

>>> $(":empty");
[script jsapi, script jquery.min.js, div#_firebugConsole]

Both the second script tag and the div are dynamically generated. The script tag comes from jQuery
being loaded by the Google JSAPI, and the div comes from Firebug.

Selecting Elements That Are Parents

The opposite of :empty, :parent will only match elements that contain children, which can be either
other elements, text, or both.

Select all paragraphs that are parents using the following:

$("p:parent");

Because all paragraphs in your sample HTML document contain text (and other elements in some
cases), all paragraphs are returned in the result set:

http://api.jquery.com/contains-selector

CHAPTER 1 ■ INTRODUCING JQUERY

19

>>> $("p:parent");
[p, p.foo, p, p#bar]

Visibility Filters
Visibility filters, :hidden and :visible, will select elements that are, respectively, hidden and visible.
Select all visible paragraphs like so:

$("p:visible");

Because none of the elements in your HTML example are currently hidden, this returns the
following result set:

>>> $("p:visible");
[p, p.foo, p, p#bar]

Attribute Filters
Element attributes are also a great way to select elements. An attribute is anything in the element that
further defines it (this includes the class, href, ID, or title attributes). For the following examples, you'll
be accessing the class attribute.

■ Note Please bear in mind that it is faster (and better practice) to use ID (#id) and class (.class) selectors in
production scripts whenever possible; the examples below are just to demonstrate the capabilities of the filter.

Selecting Elements That Match an Attribute and Value

To match elements that have a given attribute and value, enclose the attribute-value pair in square
brackets ([]):

[attribute=value]

To select all elements with a class attribute of foo, execute the following in the console:

$("[class=foo]");

This returns the following:

>>> $("[class=foo]");
[p.foo, span.foo]

CHAPTER 1 ■ INTRODUCING JQUERY

20

Selecting Elements That Don’t Have the Attribute or Don’t Match the Attribute Value

Inversely, to select elements that do not match an attribute-value pair, insert an exclamation point (!)
before the equals sign between the attribute and value:

[attribute!=value]

Select all paragraphs without the class foo by running the following command:

$("p[class!=foo]");

This results in the following:

>>> $("p[class!=foo]");
[p, p, p#bar]

Child Filters
Child filters add an alternative to the use of :even, :odd, or :eq(). The main difference is that this set of
filters starts indexing at 1 instead of 0 (like :eq() does).

Selecting Even or Odd Parameters or Parameters by Index or Equation

One of the more versatile filters, :nth-child() provides four different options to pass as a parameter
when selecting elements: even, odd, index, or an equation.

Like other child filters, this one starts indexing at 1 instead of 0, so the first element is at index 1, the
second element at 2, and so on.

Using :odd, the result set contained the paragraphs with a class of foo and an ID of foo; select odd
paragraphs using :nth-child() to see the difference in how the filters handle by executing the following
command:

$("p:nth-child(odd)");

The results display as follows in the console:

>>> $("p:nth-child(odd)");
[p, p]

Though this output may seem strange, the mismatched results are a product of the difference in
how the elements index.

Selecting First or Last Child Elements

While very similar to :first and :last, :first-child and :last-child differ in that the returned element
set can contain more than one match. For instance, to find the last span that is a child of a paragraph
element, you might use the following:

$("p span:last");

CHAPTER 1 ■ INTRODUCING JQUERY

21

which returns the following in the console:

>>> $("p span:last");
[span.foo]

However, if you needed to find every span that was the last child of a paragraph element, you would
use :last-child instead:

$("p span:last-child");

This uses each parent as a reference instead of the DOM as a whole, so the results are different:

>>> $("p span:last-child");
[span, span.foo]

Form Filters
Forms are a huge part of web sites these days, and their major role inspired a set of filters specifically
geared toward forms.

Because your HTML example does not have any form elements in it, you’ll need to append the file
with some new markup for the following examples.

In index.html, add the following HTML between the last paragraph tag and the first script tag:

 <form action="#" method="post">
 <fieldset>
 <legend>Sign Up Form</legend>
 <label for="name">Name</label>

 <input name="name" id="name" type="text" />

 <label for="password">Password</label>

 <input name="password" id="password"
 type="password" />

 <label>
 <input type="radio" name="loc" />
 I'm on my computer
 </label>

 <label>
 <input type="radio" name="loc" checked="checked" />
 I'm on a shared computer
 </label>

 <input type="submit" value="Log In" />

 <label>
 <input type="checkbox" name="notify"
 disabled="true" />
 Keep me signed in on this computer
 </label>

 </fieldset>
 </form>

CHAPTER 1 ■ INTRODUCING JQUERY

22

After saving, reload the page in your browser at http://localhost/testing/ to see the form for
testing (see Figure 1-5).

Figure 1-5. The form as it appears after editing index.html

Matching by Form Element Type

The most common form-specific filters simply match form element types. The available filters are
:button, :checkbox, :file, :image, :input, :password, :radio, :submit, and :text.

To select all radio inputs, use the following code:

$("input:radio");

This outputs the following in the console:

>>> $("input:radio");
[input on, input on]

These filters are particularly useful because all of the provided types are input elements, so
matching certain types of inputs only without these filters would be a little more difficult.

http://localhost/testing

CHAPTER 1 ■ INTRODUCING JQUERY

23

Selecting Only Enabled or Disabled Form Elements

Additionally, filters to select enabled or disabled form elements are available using :enabled and
:disabled. To select all disabled form elements, use the following code:

$(":disabled");

This outputs the following in the console:

>>> $(":disabled");
[input on]

The “Keep me signed in on this computer” check box is disabled, and therefore returned, by the
:disabled filter.

Selecting Checked or Selected Form Elements

Radio and check box inputs have a checked state, and select inputs have a selected state. Filters are
provided to retrieve the form elements that are in either state using :checked or :selected, respectively.

To select the currently checked radio button in your HTML example, execute the following code in
the console:

$(":checked");

This returns the radio input that is currently selected in the console:

>>> $(":checked");
[input on]

Summary
In this chapter you learned what jQuery is, why it was created, and the basics of how it works. You also
went over setting up a development environment using XAMPP, Firefox, and the Firebug plugin.
At this point, you should feel comfortable selecting elements from the DOM using jQuery’s powerful
selector engine. This chapter was a tad dry, but it’s important that you fully understand the how of
jQuery before moving on to heavier bits of coding.

In the next chapter, you’ll be learning how to traverse, access, and manipulate the DOM using
jQuery’s built-in methods.

C H A P T E R 2

■ ■ ■

25

Common jQuery Actions and
Methods

Now that you understand how element selection works, you can start learning the basics of how jQuery
simplifies interaction with web pages. In this chapter, you’ll get your hands dirty with the most common
and useful aspects of jQuery.

This chapter will read more like a reference and may be a bit dry at times, but it’s definitely in your
best interest to work through the examples presented within. Having a basic understanding of how these
methods work and what they do will prove invaluable as you start building the example project later on
in this book.

Understanding the Basic Behavior of jQuery Scripts
One of the most convenient features of jQuery is the fact that nearly all its methods are chainable, which
means methods can be executed one right after the other. This leads to clear, concise code that is easy to
follow:

$('p')
 .addClass('new-class')
 .text("I'm a paragraph!")
 .appendTo('body');

Chainable methods are possible because each method returns the jQuery object itself after
modification. At first, this concept may seem difficult to understand, but as you work through the
examples in this chapter, it should become clearer.

Understanding jQuery Methods
jQuery attempts to make several common programming tasks easier. At a glance, it simplifies JavaScript
development by providing the following powerful tools:

• DOM element selection using CSS syntax (which you learned in Chapter 1)

• Simple traversal and modification of the DOM

• Easy syntax for handling browser events (such as clicks and mouse-overs)

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

26

• Access to all attributes of an element, including CSS and styling properties, and
the ability to modify them

• Animation and other effects

• Simple AJAX controls

■ Note The preceding list is only a partial list of jQuery’s features and capabilities. As you continue on through the
projects in this book, other helpful features will be explored. As always, for a complete reference, visit the
documentation at http://api.jquery.com.

Traversing DOM Elements
Traversal in jQuery is the act of moving from one DOM element to another; traversal is essentially
another form of filtering performed after the initial selection has been made. This is useful because it
allows developers to complete an action and then move to another part of the DOM without needing to
perform another search by selector.

It also aids developers in affecting the elements immediately surrounding an element that is being
manipulated or otherwise utilized by a script. This can range from adding a class to parent elements to
indicate activity to disabling all inactive form elements to any number of other useful tasks.

■ Note You will be using the same HTML test file from Chapter 1 for the examples in this chapter as well. If you're
using XAMPP to test locally, point your browser to http://localhost/testing/ to load this file. Make sure the
Firebug console is open and active (see Chapter 1 for a refresher on using the Firebug console).

.eq()
If a set of elements needs to be narrowed down to just one element identified by its index, then you’re
able to use the .eq() method. This method accepts one argument: an index for the desired element. For
.eq(), indices start at 0.

$("p").eq(1);

When executed in the Firebug console, the following returns:

>>> $("p").eq(1);
[p.foo]

Additionally, a negative number can be supplied to .eq() to count backward from the end of the
selection set (e.g., passing -2 will return the second-to-last element from the set).

http://api.jquery.com
http://localhost/testing

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

27

To select the same paragraph as the preceding example by counting backward from the end of the
result set, use the following code:

$("p").eq(-3);

This returns the same paragraph in the console:

>>> $("p").eq(-3);
[p.foo]

.filter() and .not()
To use a whole new selector within a set of elements, the .filter() method comes in handy. It accepts
any selector that can be used in the jQuery function, but it applies only to the subset of elements
contained within the jQuery object.

For instance, to select all paragraphs and then filter out all but the ones with class foo, you would
use the following:

$("p").filter(".foo");

The result in the console will read as follows:

>>> $("p").filter(".foo");
[p.foo]

The inverse of .find() is .not(), which will return all elements from a result set that do not match
the given selector. For instance, to select all paragraphs and then limit the selection to paragraphs that
do not have the class foo, you would use the following:

$("p").not(".foo");

This results in the following:

>>> $("p").not(".foo");
[p, p, p#bar]

.first() and .last()
The .first() and .last() methods work identically to .eq(0) and .eq(-1), respectively. To select the
last paragraph from a set of all paragraphs on the page, use the following:

$("p").last();

This results in the following:

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

28

>>> $("p").last();
[p#bar]

.has()
To select an element that contains elements matching a certain pattern, you can use the .has() method.
For instance, you would use the following to select all paragraphs and filter the results to only
paragraphs that contain a span element:

$("p").has("span");

This outputs the following:

>>> $("p").has("span");
[p, p#bar]

.is()
The .is() method is a little different from other methods in that it does not return the jQuery object. It
evaluates a result set without modifying it, which makes it ideal for use in callback functions or
functions executed after the successful execution of a function or method.

You’ll learn more about practical uses of .is() in later examples of this book; right now, select all
paragraphs in your test document then check if one has the class foo:

$("p").is(".foo");

The result is a Boolean (true or false) answer:

>>> $("p").is(".foo");
true

.slice()
To select a subset of elements based on its index, the .slice() method comes into play. It accepts two
arguments: the first is a starting index from which to generate the subset, and the second is an optional
ending point. If the second parameter isn’t supplied, the subset will continue until the end of the
selection is reached.

■ Note The index passed in the second parameter will not be included in the result set. Therefore, if you need the
second through the fourth elements in a set (indices 1 to 3), your parameters would need to be 1 and 4.

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

29

Additionally, like with .eq(), a negative index can be used. This can be applied to the start and/or
end point.

To select all paragraphs and then limit the selection to the second and third paragraphs, use the
following code:

$("p").slice(1,3);

The result in the console reads as follows:

>>> $("p").slice(1,3);
[p.foo, p]

To select the last two elements from the paragraph set, you would use the following:

$("p").slice(-2);

This generates the following result:

>>> $("p").slice(-2);
[p, p#bar]

.children()
Oftentimes, it becomes necessary to drill down in a result set to find child elements. This is
accomplished using the .children() method, which accepts one optional parameter: a selector to match
child elements against.

To select all paragraphs and then change the selection to match all child elements of the
paragraphs, execute the following code:

$("p").children();

This outputs the following:

>>> $("p").children();
[span, span.foo]

If you need a more specific set of children than that, you’re able to pass an optional selector to the
.children() method. To select all paragraphs and then find all children with a class foo, use the
following:

$("p").children(".foo");

The results in the console are as follows:

>>> $("p").children(".foo");

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

30

[span.foo]

.closest()
The .closest() method is an easy way to find elements up the DOM tree, which is the nesting order of
elements (a DOM tree relationship in your example is the span within a paragraph within the body
element).

For example, to find the closest paragraph to the span with class foo, run the following code snippet
in the console:

$("span.foo").closest("p");

This outputs the following:

>>> $("span.foo").closest("p");
[p#bar]

.find()
Similar to the .children() method, the .find() method matches descendants of elements within the
current set. The main difference between .find() and .children() is that .children() only checks one
level down in the DOM tree, whereas .find() doesn’t care how deep the matched elements are.

To demonstrate, select the body tag and then find any contained span elements using the following:

$("body").find("span");

This results in both spans being returned:

>>> $("body").find("span");
[span, span.foo]

However, if you were to try the same thing using .children(), an empty result set is returned:

>>> $("body").children("span");
[]

.next(), .nextAll(), and .nextUntil()
A trio of useful methods for finding the next sibling elements in a set is provided in .next(), .nextAll(),
and .nextUntil().

The .next() method will find the next sibling element in the set for each of the elements in the
original result set. To select a paragraph with class foo and then traverse to the next sibling element,
execute the following code in the console:

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

31

$("p.foo").next();

This generates the following output:

>>> $("p.foo").next();
[p]

A selector can be passed to .next() as well, which allows developers to determine which type of next
sibling element should be matched:

$("p.foo").next("#bar");

This returns an empty result set, since the next element does not have an ID of bar:

>>> $("p.foo").next("#bar");
[]

Because .next() returns only one element, a companion method was created that returns all next
sibling elements, .nextAll(). To select all paragraphs after the paragraph with the class foo, use the
following code:

$(".foo").nextAll("p");

This returns the following result:

>>> $(".foo").nextAll("p");
[p, p#bar]

■ Note The selector is optional in .nextAll(), as it is in .next().

The third method available for selecting next sibling elements is the .nextUntil() method. As its
name suggests, this method will return all next elements until a selector is matched. It’s important to
note that the element matched by the selector will not be included in the result set.

To demonstrate this, select the paragraph with the class foo and use .nextUntil() with a selector of
"#bar":

$(".foo").nextUntil("#bar");

Only one paragraph is returned in the result set, and the paragraph with the ID of bar is not
included:

>>> $(".foo").nextUntil("#bar");

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

32

[p]

To include the paragraph with an ID of bar, you need to look at the element immediately following,
which is the form element in this case. Try the selector again using this updated code:

$(".foo").nextUntil("form");

Now, both following paragraphs are returned:

>>> $(".foo").nextUntil("form");
[p, p#bar]

.prev(), .prevAll(), and .prevUntil()
The .prev(), .prevAll(), and .prevUntil() functions work exactly like .next(), .nextAll(), and
.nextUntil(), except they look at previous sibling elements rather than next sibling elements:

>>> $("#bar").prev();

[p]

>>> $("#bar").prevAll();

[p, p.foo, p]

>>> $("#bar").prevUntil(".foo");

[p]

.siblings()
To select sibling elements on both sides of an element, use the .siblings() method. This accepts a
selector as an argument to limit what types of elements are returned. To match all sibling paragraph
elements to the paragraph with ID bar, execute the following code:

$("#bar").siblings("p");

The results will look as follows:

>>> $("#bar").siblings("p");

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

33

[p, p.foo, p]

.parent()
The .parent() method returns a set of the immediate parent elements of the current selection. For
instance, to select all parent elements of any elements with the class foo, use the following:

$(".foo").parent();

This returns the following:

>>> $(".foo").parent();
[body, p#bar]

To match only paragraph elements that are parents of elements with class foo, modify the code to
the following:

$(".foo").parent("p");

This narrows the result set:

>>> $(".foo").parent("p");
[p#bar]

.parents() and .parentsUntil()
Unlike .parent(), .parents() will return all parent elements, with an optional selector passed to filter
the results.

To select all parent elements of the check box in the form on the example page, use the following
code:

$(":checkbox").parents();

This finds every parent element, all the way out to the html element:

>>> $(":checkbox").parents();
[label, fieldset, form #, body, html]

To filter the results so that only the parent form element is returned, modify the code as follows:

$(":checkbox").parents("form");

This returns only the parent form element:

>>> $(":checkbox").parents("form");

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

34

[form #]

Finally, to select a range of parents until a selector is matched, similar to .nextUntil() or
.prevUntil(), use .parentsUntil():

$(":checkbox").parentsUntil("form");

This returns all parent elements until the form element is encountered:

>>> $(":checkbox").parentsUntil("form");
[label, fieldset]

.add()
The .add() method is versatile and, therefore, a bit more complicated. Essentially, it allows you to add
additional elements to the existing jQuery object using a selector or a string of HTML.

To select all paragraphs and then add the span with class foo to the object, use the following:

$("p").add("span.foo");

This outputs the following:

>>> $("p").add("span.foo");
[p, p.foo, p, p#bar, span.foo]

The .add() method also allows you to create elements on the fly, like so:

$("p").add('This is a new span');

Executing the preceding code will output this:

>>> $("p").add('This is a new span');
[p, p.foo, p, p#bar, span#bat]

■ Note Notice that the element span#bat is faded in the console output. This happens because, while the element
exists in the jQuery object, it has not been appended to the DOM and, therefore, does not display on the page.
You'll learn how to add new elements to the DOM in the next section, “Creating and Inserting DOM Elements.”

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

35

.andSelf()
If you’re using a traversal method, you may want to keep the original matched set of elements as well.
The .andSelf() method provides this ability by allowing the original set to be recalled and appended to
the new set.

For instance, to match all paragraph elements and then find child spans, use the following code:

$("p").find("span");

This returns the spans in the document, but you’ve lost the paragraphs:

>>> $("p").find("span");
[span, span.foo]

To keep the paragraphs and match the spans, add a call to .andSelf() to the end of the code:

$("p").find("span").andSelf();

This results in the desired output:

>>> $("p").find("span").andSelf();
[p, p.foo, p, span, p#bar, span.foo]

.contents()
The .contents() method works similarly to the .children() method, except .contents() returns text
nodes as well, which are simply the character data contained within an element (the actual text displayed
by an element).1

To find all contents of the span with class foo, use the following:

$("span.foo").contents();

This results in the following output:

>>> $("span.foo").contents();
[<TextNode textContent="And this sentence is in a span.">]

1 http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1312295772

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1312295772

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

36

.end()
At times in jQuery scripts, you will find it necessary to back up to the last set of elements stored in the
jQuery object. The .end() method does exactly that: it reverts the jQuery object to the state immediately
preceding the last filtering action in the current jQuery object chain.

To select all paragraphs, then find all spans, the original set of paragraphs is no longer available:

>>> $("p").find("span");
[span, span.foo]

To revert back to the set of paragraphs, add .end() to the chain:

>>> $("p").find("span").end();
[p, p.foo, p, p#bar]

Creating and Inserting DOM Elements
The first thing you’ll learn that actually changes the DOM, rather than simply selecting elements from it,
is how to create new elements and insert them into the DOM. Since the release of jQuery 1.4, this is
pretty straightforward.

This section of the book starts using more involved code snippets, and will therefore require a minor
adjustment to your Firebug console. At the bottom right of the console, there is a round button with an
arrow pointing upward (see Figure 2-1).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

37

Figure 2-1. The button to activate the multiline console test area

Click this button to activate the multiline testing area, where you’ll be able to enter commands
across multiple lines, making them easier to read and allowing for more advanced examples (see
Figure 2-2).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

38

Figure 2-2. The multiline testing area (shown at the right-hand side of the console)

With the multiline testing area, you now need to click the Run button at the bottom to execute the
code. Pressing Enter, as with the single-line test console, will now break to a new line.

Creating New DOM Elements
To create a new DOM element, jQuery only needs the tag to be created. For instance, to create a new
paragraph element, you would use the following:

$("<p>");

To add attributes and text to this element, you can simply write it out as plain HTML:

$('<p class="bat">This is a new paragraph!</p>');

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

39

■ Note The preceding example uses single quotation marks to enclose the string of HTML rather than double
ones. This has no effect on the jQuery function; it merely eliminates the need to escape the double quotes used in
the class attribute (e.g., class=\"bat\").

As of jQuery 1.4, you can also add attributes to this new element by passing a second argument as
JavaScript Object Notation (JSON)2:

$("<p>", {
 "class":"bat",
 "text":"This is a new paragraph!"
});

The result of the above code snippet is the following:

>>> $("<p>", { "class":"bat", "text":"This is a new paragraph!" });
[p.bat]

Because this is only creating the element, it hasn’t been attached to the DOM yet and, therefore,
isn’t visible in the browser window. You’ll learn to insert new elements in the next section, “Inserting
New Elements into the DOM.”

■ Note At its simplest, JSON is a key-value pairing where both the key and value are surrounded by quotation
marks and all key-value pairs are comma-separated and enclosed in curly braces ({}). A sample of JSON data
would be { "key":"value" } or { "key1":"value1", "key2":"value2" }.

Inserting New Elements into the DOM
Now that you have a basic understanding of how to create new elements, you can begin learning how to
insert them into the DOM. jQuery provides several methods for handling this, which you’ll explore in
this section.

An important note to make here is that the modification of the DOM is temporary, meaning that any
changes made will be reset back to the original HTML document once the page is refreshed. This
happens because JavaScript is a client-side language, which means it isn’t modifying the actual files from
the server, but the browser’s individual interpretation of the file.

2 http://en.wikipedia.org/wiki/Json

http://en.wikipedia.org/wiki/Json

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

40

Changes made with JavaScript can be saved on the server through the use of AJAX (which you’ll
learn about later in this chapter), which allows JavaScript to interface with server-side languages such as
PHP.

■ Note After performing the examples in each of the following sections, refresh your page so each new example
is starting with a fresh copy of the example HTML file.

.append() and .prepend()

The .append() and .prepend() functions will attach the elements passed as arguments to the jQuery
object to which they are chained. The only difference is that .append() attaches the elements at the end,
and .prepend() attaches at the beginning.

The content will be appended or prepended inside the matched elements, meaning if you match all
paragraphs on the page and append a new sentence, “This was added by jQuery”, it will be appended
inside the closing paragraph tag (</p>).

Try this out by entering the following code into your console:

$("p").append(" This was added by jQuery.");

Executing the code will add this sentence to the end of each paragraph inside the closing paragraph
tag. This is evident because the text is not knocked to the next line, as it would be if it were outside the
closing tag.

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

41

INSPECTING HTML USING THE ELEMENT INSPECTOR IN FIREBUG

You can also see this by using the element inspection tool provided by Firebug. Near the top left of the
console, there's a button that looks like a mouse cursor over a rectangle (see Figure 2-3). Click it to
activate the element inspector.

Figure 2-3. The button to activate the element inspector

After the inspector is active, you can hover over different elements in the browser, and they'll highlight
with a blue outline. Hover over one of the paragraphs you just appended text to, and click it. This brings up
the HTML panel of Firebug with the current element collapsed and highlighted, and a tab to expand the
element (see Figure 2-4).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

42

Figure 2-4. The collapsed element as displayed after hovering over and clicking it

Click the tab to expand the element, and you can see the contents, including the appended text, which is
contained within the paragraph element (see Figure 2-5).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

43

Figure 2-5. The expanded element, including the dynamically added text

You can use this technique throughout the rest of the exercises in this book to see where content and
elements are being added to the DOM.

Using .append() and .prepend(), you can also add new elements to the DOM. For instance, to add a
new paragraph at the top of the browser page, prepend a new element to the body using this code:

var para = $("<p>", {
 "text":"I'm a new paragraph!",
 "css":{"background":"yellow"}
 });
$("body").prepend(para);

■ Note This example uses a variable to store the new element before prepending it to the body. This is done to
increase the legibility of the script. You’ll be using this technique often throughout this book.

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

44

After executing the preceding code in your console, a new paragraph with a yellow background
appears at the top of your browser window (see Figure 2-6).

Figure 2-6. The new paragraph as it appears after prepending it to the body element

.appendTo() and .prependTo()

In the last example, you had to create an element, store it, and then select the element to which it was
appended. This can be a somewhat roundabout approach, but fortunately, jQuery provides .appendTo()
and .prependTo(), which chain instead to the object to be appended and accept the selector of the
element to which you wish to append.

Using the last example as a starting point, to add the same paragraph element to the body using
.prependTo(), your code would simplify thusly:

$("<p>", {
 "text":"I'm a new paragraph!",
 "css":{"background":"yellow"}
 })
 .prependTo("body");

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

45

This produces an identical result with a much more concise snippet of code.

.after() and .before()

The .after() and .before() methods are similar to .append() and .prepend(), except they add the
content outside the element either before or after it, instead of inside the element at the beginning or
end.

To add a new paragraph after the paragraph with class foo, use the following snippet:

$("p.foo").after("<p>A new paragraph.</p>");

Executing the code results in a new paragraph insertion just below the paragraph with class foo (see
Figure 2-7).

Figure 2-7. A new paragraph inserted after the paragraph with class foo

.insertAfter() and .insertBefore()

The same way that .appendTo() and .prependTo() allow for more concise addition of new elements to
the DOM, .insertAfter() and .insertBefore() offer the same alternative for .after() and .before().

To repeat the example from the previous section using .insertAfter(), alter the code to read as
follows:

$("<p>", {
 "text":"A new paragraph."
 })
 .insertAfter("p.foo");

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

46

This duplicates the result from before (see Figure 2-14).

.wrap()

The .wrap() method allows developers to enclose existing elements with one or more new elements
quickly and easily.

The argument accepted by .wrap() can either be a collection of one or more tags to wrap around the
selected elements, or a callback function to generate the tags.

First, wrap all the spans in the example document with a strong tag using the following:

$("span").wrap("");

This results in the text of the two spans becoming bold (see Figure 2-8).

Figure 2-8. The spans appear bold after wrapping them with strong tags

The syntax used for the wrapping element is relatively forgiving, and the output shown in Figure 2-7
could have been accomplished using either "", "", or "".

Additionally, multiple tags can be wrapped around elements by passing a nested set of tags to the
.wrap() method:

$("span").wrap("");

After executing the preceding line, the text in the spans will appear bold and italicized (see
Figure 2-9).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

47

Figure 2-9. Span text appears bold and italicized after wrapping it with strong and em tags

To use a callback function to generate the desired HTML tag to wrap an element with, you must
return a tag from the callback. For instance, to wrap all spans with the class foo in strong tags and all
other spans in em tags, execute the following code:

$("span").wrap(function(){
 return $(this).is(".foo") ? "" : "";
 });

After executing this snippet, the browser shows one span in italics, and the other (the one with class
foo) in bold (see Figure 2-10).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

48

Figure 2-10. Use a callback function to conditionally wrap certain elements

.unwrap()

The inverse of .wrap(), .unwrap() will remove tags that surround a given element. It does not accept any
arguments; it simply finds the immediate parent element and removes it.

To unwrap the span elements in the example file, execute this code:

$("span").unwrap();

This removes the parent elements (but leaves the text nodes intact), which alters the layout (see
Figure 2-11).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

49

Figure 2-11. After unwrapping the span elements, the document layout changes

.wrapAll()

If an entire set of elements needs to be wrapped in a new tag, .wrapAll() is used. Instead of individually
wrapping each selected element with a new tag, it groups all selected elements and creates one wrapper
around the whole group.

To wrap a div element with a yellow background around all paragraphs on the page, use the
following code:

var div = $("<div>", {
 "css":{"background-color":"yellow"}
 });
$("p").wrapAll(div);

After executing this code, the new div is in place, and all paragraphs appear within its yellow
background (see Figure 2-12).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

50

Figure 2-12. The yellow background shows the div successfully wrapped all paragraphs

There’s one important note about .wrapAll(): it will move elements in the DOM to group them. To
demonstrate this, use .wrapAll() to add a strong tag around all spans in the document:

$("span").wrapAll("");

After executing the command, note that the second span in the document was moved next to the
first one so they could be wrapped in the same tag (see Figure 2-13).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

51

Figure 2-13. The spans are relocated to be next to one another so both can be wrapped

.wrapInner()

In some cases, it’s desirable to wrap the content of an element but not the tag itself. A good example of
this is making an entire paragraph bold: to wrap strong tags around a paragraph is not valid HTML and,
therefore, isn’t a desirable solution. Fortunately, jQuery provides .wrapInner(), which wraps everything
contained within an element in a new tag.

To italicize all text in the paragraphs on the test page, use the following code:

$("p").wrapInner("");

After execution, all the text on the page is italicized and the markup is validly nested (see
Figure 2-14).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

52

Figure 2-14. All text is italicized, and the em tags are inside the paragraph tags

.remove() and .detach()
To remove an element from the DOM entirely, the .remove() and .detach() methods are used. Both
methods remove selected elements from the DOM, but the .detach() method keeps jQuery data for the
element intact, which makes it ideal for situations in which an element will be reattached to the DOM at
some point.

Both .remove() and .detach() accept an optional selector to filter the elements being removed. In
your example, remove all paragraphs with class foo using the following:

$("p").remove(".foo");

When the code is run, the paragraph with class foo is removed from view and is no longer part of the
DOM.

To demonstrate the difference between .remove() and .detach(), you’ll have to jump ahead a bit
and use a method called .data(), which allows developers to attach information to an element without
adding additional tags or attributes .data() will be covered more thoroughly in the next section.)

First, add some data to the first paragraph in the DOM. Then, with the data added, remove the
element from the DOM using .detach(), reattach it, and attempt to read the data:

$("p:first").data("test","This is some data.");
var p = $("p:first").detach();
console.log("Data stored: "+p.data("test"));

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

53

■ Note You're using a Firebug-specific object, console, and its .log() method to output specific information to
the Firebug console. This is especially useful for debugging, but it needs to be removed before a project goes live
to avoid JavaScript errors on computers that don't have Firebug installed.

After running this code, the .data() method attaches some information to the first paragraph and
gets removed from the DOM and stored in a variable; then the script attempts to output the value of the
information stored with .data(). The console will output the following:

>>> $("p:first").data("test","This is some...ored: "+p.data("test"));
Data stored: This is some data.

Now, run the same test, but use .remove() instead of .detach():

$("p:first").data("test","This is some data.");
var p = $("p:first").remove();
console.log("Data stored: "+p.data("test"));

The output shows that the data was lost when the element was removed:

>>> $("p:first").data("test","This is some...ored: "+p.data("test"));
Data stored: undefined

Accessing and Modifying CSS and Attributes
Previously, when you were creating DOM elements, you were able to define attributes such as CSS styles,
the text contained within, and more. To access and modify this information for existing elements, jQuery
has a set of built-in methods.

.attr()
For most element attributes, the .attr() method is used. This method has two purposes: The first is to
read a given attribute, which is accomplished by supplying the name of the desired attribute as the first
argument to the method with no other arguments. The second is to set an attribute by passing the name
of the attribute to be set as the first argument and the value to which it is to be set as the second.

First, retrieve the ID of the last paragraph using the following:

$("p:eq(3)").attr("id");

In the console, this produces the following output:

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

54

>>> $("p:eq(3)").attr("id");
"bar"

Next, change the ID attribute of the last paragraph to "bat" using this code:

$("#bar").attr("id", "bat");

After execution, the following displays in the console:

>>> $("#bar").attr("id", "bat");
[p#bat]

Now, if you try to select elements with an ID of bar, an empty result set is returned:

>>> $("#bar");
[]

However, you can now select a paragraph element with an ID of bat:

>>> $("#bat");
[p#bat]

Additionally, multiple attributes can be set using JSON format:

$("p:eq(3)").attr({
 "id":"baz",
 "title":"A captivating paragraph, isn't it?"
 });

After executing this code, the HTML panel of Firebug reveals that the paragraph’s markup has been
changed:

<p id="baz" title="A captivating paragraph, isn't it?">

.removeAttr()
To remove an attribute, simply call .removeAttr() on the element from which you wish to remove the
attribute and pass the attribute’s name.

Enable the check box in the sample form by removing the disabled attribute:

$(":checkbox").removeAttr("disabled");

After executing this code, the check box can now be checked and unchecked at will.

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

55

.css()
The .css() method works just like .attr(), except it applies to styling rules. To return a value, pass the
name of the value as the only argument to the method; to set a value, pass both an attribute name and a
new value for it. Like .attr(), multiple values can be set using JSON format.

To change all elements with class foo to have red text and a yellow background, use the following:

$(".foo").css({
 "color":"red",
 "background":"yellow"
 });

This code, once executed, adds new style rules to the selected elements (see Figure 2-15).

Figure 2-15. The document after adding CSS styling to elements with class foo

Before reloading the page, retrieve the background value from elements with class foo using the
following code:

$(".foo").css("background");

This will return the following:

>>> $(".foo").css("background");
"yellow none repeat scroll 0% 0%"

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

56

■ Tip The values returned are CSS shorthand properties.3 An added bonus of jQuery is the ability to set CSS
properties using CSS shorthand, which doesn't work using basic JavaScript.

.text() and .html()

When dealing with the contents of an element, the .text() and .html() methods are used. The
difference between the two is that .html() will allow you to read out and insert new HTML tags into an
element, where .text() is for reading and writing text only.

If either of these methods is called on an element set with no arguments, the contents of the
element are returned. When a value is passed to the method, the existing value is overwritten, and the
new one put in its place.

To read the text out of the paragraph with ID bar, run the following code in the console:

$("#bar").text();

This captures all text (including whitespace) but ignores the span tag. The following is output:

>>> $("#bar").text();

"Paragraph with an id.

 And this sentence is in a span.

 "

To read everything out of the paragraph, including the span tag, use the following code:

$("#bar").html();

This results in the following:

>>> $("#bar").html();

"Paragraph with an id.

 And this sentence is in a span.

 "

Now, change the text by passing a value to the .text() method:

3 http://www.456bereastreet.com/archive/200502/efficient_css_with_shorthand_properties/

http://www.456bereastreet.com/archive/200502/efficient_css_with_shorthand_properties

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

57

$("#bar").text("This is new text.");

The previous content of the paragraph is removed, and the new text is inserted. Note that the span
tag was removed as well; all contents of an element are replaced when using .text() and .html().

To insert HTML into the paragraph, replace its contents again with the following snippet:

$("#bar").html("This is some HTML text.");

After execution, the new text appears in the paragraph and the word “HTML” appears in bold (see
Figure 2-16).

Figure 2-16. The browser after inserting text and HTML tags

.val()
Accessing and modifying the content of form elements is accomplished through the .val() method. This
method returns the value of an input, or if a value is supplied, sets the value of an input.

Retrieve the value of the submit button in your test form using the following:

$(":submit").val();

which outputs this:

>>> $(":submit").val();
"Log In"

Now, update the value of the submit input to read "Sign In" using this code:

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

58

$(":submit").val("Sign In");

The submit button is called Sign In after running the preceding code snippet.

.data()
Previously, you used the .data() method to store information for a test of .remove() and .detach(). The
.data() method does exactly that: it allows you to store information about an element within the jQuery
object in a safe, easy manner.

To give the first two paragraphs in the test document nicknames, store the information using
.data() and then log it in the console:

$("p:first")
 .data("nickname", "Pookie")
 .next("p")
 .data("nickname", "Shnookums");
console.log("My nickname: "+$("p:first").data("nickname"));
console.log("My nickname: "+$("p:eq(1)").data("nickname"));

After executing this script, the following will be logged in the console:

>>> $("p:first") .data("nick...name: "+$("p:eq(1)").data("nickname"));

My nickname: Pookie

My nickname: Shnookums

Data can be added to an element en masse as in JSON format as well:

$("p.foo").data({
 "nickname":"Wubby",
 "favorite":{
 "movie":"Pretty Woman",
 "music":"Sade",
 "color":"pink"
 }
});
console.log("Nickname: "+$("p.foo").data("nickname"));
console.log("Favorite Movie: "+$("p.foo").data("favorite").movie);

The preceding will produce the following output when executed:

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

59

>>> $("p.foo").data({ "nickname":"Wubby",....data("favorite").movie);

Nickname: Wubby

Favorite Movie: Pretty Woman

This can also be simplified by caching the data in a variable, like so:

$("p.foo").data({
 "nickname":"Wubby",
 "favorite":{
 "movie":"Pretty Woman",
 "music":"Sade",
 "color":"pink"
 }
});
var info = $("p.foo").data(); // cache the data object in a variable
console.log("Nickname: "+info.nickname);
console.log("Favorite Movie: "+info.favorite.movie);

This produces an identical result to the previous example, but performs a little better and is a bit
easier to read.

.addClass(), .removeClass(), and .toggleClass()
A trio of shortcut methods was written for dealing with classes, since their use is so integral to modern
web design. The first two methods, .addClass() and .removeClass(), simply add or remove a class
attribute, respectively:

$("p:first").addClass("bat");
console.log("Text: "+$(".bat").text());
$("p:first").removeClass("bat");
console.log("Text: "+$(".bat").text());

The preceding snippet outputs the following in the console:

>>> $("p:first").addClass("bat"...le.log("Text: "+$(".bat").text());

Text: Hello World!

Text:

The third method, .toggleClass(), accepts a class name or names and then either adds the class if it
doesn’t already exist for the element or removes it if the class already exists.

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

60

Add the class baz and remove the class foo from the second paragraph in the example page using
the following code:

$("p.foo").toggleClass("foo baz");

Upon execution, the paragraph is modified and appears with the old class removed and the new one
added (see Figure 2-17).

Figure 2-17. The foo class is removed, and the baz class is added.

To revert to the original class of foo and remove baz, select the paragraph, and apply .toggleClass()
again:

$("p.baz").toggleClass("foo baz");

This results in the paragraph going back to having only one class: foo.

.hasClass()
The .hasClass() method works similarly to the .is() method in that it determines if a class exists on a
selected element and then returns either true or false. This makes it ideal for callback functions.

Check if the first paragraph has class foo, and conditionally output a message using the following:

var msg = $("p:eq(1)").hasClass("foo") ? "Found!" : "Nope!";
console.log("Class? "+msg);

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

61

.height() and .width()
To obtain the height or width of an element, the .height() and .width() methods are handy. Both return
a value without units, meaning the value returned is an integer (if the element is 68 pixels high,
.height() will return 68). This differs from .css(), which will return the units of measure as well.

Get the height of the form by running the following code:

console.log("Form height: "+$("form").height()+"px");

This outputs the following in the console:

>>> console.log("Form height: "+$("form").height()+"px");
Form height: 238px

■ Note The actual height returned may vary on your browser depending on which operating system you’re using.

By passing a value to .height() or .width(), a new value is set. Make all paragraphs on the page 100
pixels high with a yellow background using the following code:

$("p").height(100).css("background","yellow");

Upon execution, all paragraph heights change and their backgrounds become yellow (see
Figure 2-18).

Figure 2-18. The modified height and backgrounds of all document paragraphs

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

62

.innerHeight(), .innerWidth(), .outerHeight(), and .outerWidth()
The inner height and width of an element is the width or height not counting borders or margins. You
can access this information using the .innerHeight() and .innerWidth() methods.

If you wish to include the borders in the height or width of the element, use .outerHeight() or
.outerWidth(). To include margins as well, use .outerHeight(true) or .outerWidth(true).

Add a margin and border to the paragraph with class foo and then log its different widths and
heights:

var el = $("p.foo");
el.css({
 "margin":"20px",
 "border":"2px solid black"
 });
console.log("Inner width: "+el.innerWidth()+"px");
console.log("Inner height: "+el.innerHeight()+"px");
console.log("Outer width: "+el.outerWidth()+"px");
console.log("Outer height: "+el.outerHeight()+"px");
console.log("Outer width with margins: "+el.outerWidth(true)+"px");
console.log("Outer height with margins: "+el.outerHeight(true)+"px");

This outputs the following in the console:

>>> var el = $("p.foo"); el.c...rgins: "+el.outerHeight(true)+"px");

Inner width: 840px

Inner height: 19px

Outer width: 844px

Outer height: 23px

Outer width with margins: 884px

Outer height with margins: 63px

■ Note Again, your results may vary depending on what operating system you're using.

Affecting Result Sets
To process a set of elements, we need a set of methods that allows us to affect each element in the set.

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

63

.map() and .each()
The .map() and .each() methods allow developers to apply a function individually to each element in a
set using a callback function that has two arguments: the current element index and the current DOM
element.

The difference between the two is that .map() returns a new object containing the returned values of
the callback, whereas .each() will return the original object with the changes performed by the callback
included. This means that .each() is chainable, while .map() is not.

To loop through each paragraph and element with class foo and append the tag name and element
index, use the following code:

$("p,.foo").map(function(index, ele){
 $(this).append(" "+ele.tagName+" #"+index);
 });

This adds the element’s tag name and the index number to the end of each matched element (see
Figure 2-19).

Figure 2-19. The test page after mapping a callback function to display names and indexes for each

element

To accomplish the same thing with .each(), simply swap out the call to .map():

$("p,.foo").each(function(index, ele){
 $(this).append(" "+ele.tagName+" #"+index);
 });

This produces an identical result.

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

64

The difference comes into play if you need to perform further processing after the call to .map() or
.each(). For instance, if you wanted to append the tag name and index to each paragraph and the span
with class foo as previously illustrated and then filter to just the span with class foo and change its
background and text colors, you might try the following:

$("p,.foo").map(function(index, ele){
 $(this).append(" "+ele.tagName+" #"+index);
 })
 .find("span.foo")
 .css({
 "color":"red",
 "background":"yellow"
 });

After execution, the tag names and indices are appended, but the span doesn’t have any style
changes applied. This happens because the elements are no longer referenced by the object returned
from .map().

To get the preceding snippet to perform as expected, you must swap out the call to .map() for a call
to.each():

$("p,.foo").each(function(index, ele){
 $(this).append(" "+ele.tagName+" #"+index);
 })
 .find("span.foo")
 .css({
 "color":"red",
 "background":"yellow"
 });

Now, running the code produces the desired result (see Figure 2-20).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

65

Figure 2-20. Using .each(), the expected results are produced

Using Animation and Other Effects
One of the most exciting features of jQuery is its library of methods that allow for animation and special
effects, which are all possible with plain JavaScript but are incredibly easy using jQuery. A traditional
JavaScript approach is tricky and much more involved.

■ Note Because it’s difficult to show animations as static images, you’ll need to rely on your browser for an
illustration of how these examples should look. For live demonstrations of the different animation effects, visit the
jQuery API at http://api.jquery.com, and look up the individual method you wish to see demonstrated.

.show() and .hide()
The most basic effects functions are .show() and .hide(). When fired without a parameter, they simply
add or remove display:none; from the element’s style attribute.

Hide the paragraph with ID bar using the following:

$("#bar").hide();

http://api.jquery.com

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

66

The paragraph disappears from the browser window but is still visible in the DOM using the
element inspector. To bring it back into view, call .show():

$("#bar").show();

The element comes back as it was before.
To make the hiding and showing of elements animated, the duration (in milliseconds) can be

passed, as well as an optional callback to be fired after the animation is complete. To demonstrate, add a
background and border to the paragraph with ID bar and then hide it with a duration of 2 seconds and a
callback function that will log a message in the console:

$("#bar")
 .css({
 "background":"yellow",
 "border":"1px solid black"
 })
 .hide(2000,function(){
 console.log("Animation complete!");
 });

Upon execution, the CSS styles are added to the element, and the .hide() method fires. This causes
the element to shrink horizontally and vertically, as well as fading its opacity. After two seconds it will
finish disappearing and the callback function logs the "Animation complete!" message in the console.

■ Note The callback function will be fired for each element in a set that is animated.

.fadeIn(), .fadeOut(), and .fadeTo()
To fade an element in or out (using opacity), use .fadeIn() and .fadeOut(). When called, these methods
adjust the opacity of the elements either from 0 to 1 in .fadeIn() or 1 to 0 in .fadeOut(). When an
element is faded out, display:none; is applied to the element as well. When faded in, display:none; is
removed from the element if it exists.

Both methods accept optional parameters for the duration of the animation (the default is 400
milliseconds) and a callback to be fired when the animation completes. The duration has two shortcut
strings, "fast" and "slow", which translate to 200 and 600 milliseconds, respectively.

To fade out the form, log a message, fade it back in, and log another message, use the following:

$("form")
 .fadeOut(1000, function(){
 console.log("Faded out!");
 })
 .fadeIn(1000, function(){
 console.log("Faded in!");
 });

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

67

Alternatively, .fadeTo() allows you to specify the opacity to which the element should fade. This
method requires two arguments: a duration and the opacity to which the element show fade (a number
between 0 and 1). An optional callback can be passed as the third argument as well.

Fade the form to 50 percent opacity and log a message using the following:

$("form")
 .fadeTo(1000, 0.5, function(){
 console.log("Faded to 50%!");
 });

.slideUp(), .slideDown(), and .slideToggle()
To hide an element by reducing its height to 0, .slideUp() is a shortcut method. It animates the
reduction of the element’s height until it reaches 0 and then sets display:none; to ensure the layout is
no longer affected by the element. To reverse this, the .slideDown() method removes the display:none;
and animates the height from 0 back to the original height of the element.

Just like .fadeIn() and .fadeOut(), two optional parameters are accepted: the duration and a
callback function.

Slide up the paragraph with class foo, log a message, slide it back down, and log another message:

$("p.foo")
 .slideUp(1000, function(){
 console.log("Hidden!");
 })
 .slideDown(1000, function(){
 console.log("Shown!");
 });

The .slideToggle() method does the same thing as .slideUp() and .slideDown(), but it’s smart
enough to know if an element is hidden or shown and uses that information to determine which action
to take.

To set up a display toggle for the paragraph with class foo, use the following:

$("p.foo")
 .slideToggle("slow", function(){
 console.log("Toggled!");
 });

By running this code multiple times, you’ll see the paragraph slide up and down in alternating
fashion.

.animate()
The previously discussed animation methods are shortcuts that all call the .animate() method. This
method will animate most visual CSS properties of an element and supports easing, which is one of any
number of mathematical formulas that alter the way the animation operates. By default, "linear" and
"swing" easing are supported, but an easy-to-include easing plug-in is available for jQuery (you’ll learn
about plug-ins later in this book).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

68

The .animate() method accepts several arguments in two formats: In the first format, the method is
passed a JSON-formatted set of CSS properties to animate as the first argument, an optional duration in
milliseconds for the second argument, an optional easing formula as the third argument, and an
optional callback as the fourth argument. The second format passes a JSON-formatted set of CSS
properties as its first argument and a JSON-formatted set of options as its second.

After setting a background and border style, to animate the height and width of the paragraph
element with ID bar over the span of 5 seconds using the "swing" easing type and logging a message
upon completion, you would use the following for the first format:

$("#bar")
 .css({
 "background":"yellow",
 "border":"1px solid black"
 })
 .animate({
 "width":"500px",
 "height":"100px"
 },
 5000,
 "swing",
 function(){
 console.log("Animation complete!");
 });

Upon completion, the paragraph is yellow with a black border and has changed its size to match the
parameters passed (see Figure 2-21).

Figure 2-21. The paragraph after animating its height and width

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

69

Using the second format, the code would change as follows:

$("#bar")
 .css({
 "background":"yellow",
 "border":"1px solid black"
 })
 .animate({
 "width":"500px",
 "height":"100px"
 },
 {
 "duration":5000,
 "easing":"swing",
 "complete":function(){
 console.log("Animation complete!");
 }
 });

This produces an identical result. The second format of .animate() provides for additional options
as well. To complete the same action using all available options, your code might look like this:

$("#bar")
 .css({
 "background":"yellow",
 "border":"1px solid black"
 })
 .animate({
 "width":"500px",
 "height":"100px"
 },
 {
 "duration":5000,
 "easing":"swing",
 "complete":function(){
 console.log("Animation complete!");
 },
 "step":function(){
 console.log("Step completed!");
 },
 "queue":true,
 "specialEasing":{
 "width":"linear"
 }
 });

The step option allows developers to create a callback function to be fired after each step of the
animation. This is each time the property is adjusted, so the preceding example ends up outputting quite
a few log messages of "Step completed!".

The queue option tells the animation whether or not it should be added to the current queue, that is,
the order in which animations have been called. If multiple animations are called and queued, the first

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

70

animation will complete before the second begins; the second will complete before the third begins, and
so on.

The specialEasing option allows developers to attach different easing styles to each CSS property
being animated.

■ Note specialEasing is a new feature in jQuery 1.4 and the brainchild of James Padolsey. He posted a great
example available at http://james.padolsey.com/demos/jquery/easing/easing-jq14.html.

.delay()
The .delay() method is new in jQuery 1.4 and essentially allows developers to pause a script’s execution
for a given number of milliseconds. It provides the ability to run one animation and wait for a bit before
starting the next animation.

To slide up the paragraph with ID bar, wait 3 seconds, and slide it back down, use the following
code:

$("#bar")
 .css({
 "background":"yellow",
 "border":"1px solid black"
 })
 .slideUp(1000, function(){
 console.log("Animation completed!");
 })
 .delay(3000)
 .slideDown(1000, function(){
 console.log("Animation completed!");
 });

.stop()
To stop an animation, the .stop() method is used. This method accepts two Boolean argument: one to
determine whether the queue should be cleared and another to determine whether the animation
should jump to the end. Both values default to false.

To start an animation, stop the animation, clear the queue, and jump to the end after 200 steps, use
the following:

var count = 0; // Keep track of the current step count
$("#bar")
 .css({
 "background":"yellow",
 "border":"1px solid black"
 })
 .animate({
 "width":"500px"

http://james.padolsey.com/demos/jquery/easing/easing-jq14.html

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

71

 },
 {
 "duration":6000,
 "step":function(){
 if(count++==200)
 {
 $(this).stop(true, true);
 }
 }
 });

Handling Events
In many scripts, it’s desirable to have certain actions occur when certain events, or browser actions,
occur. Support is built into jQuery to handle browser events, which you’ll learn in this section.

Browser Events
Browser events occur when the browser itself experiences a change or error.

.error()

If a browser error occurs, this event is triggered. One common instance of a browser error would be an
image tag that tries to load an image that does not exist. The .error() method allows developers to bind
a handler (i.e., a function to be fired if the event occurs) to the event.

Create an image tag that tries to display an image that doesn’t exist, and attach an error handler to
the error event that outputs a message to the console:

$("", {
 "src":"not/an/image.png",
 "alt":"This image does not exist"
 })
 .error(function(){
 console.log("The image cannot be loaded!");
 })
 .appendTo("body");

Upon execution of this code, the console will display the following:

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

72

>>> $("", { "src":"not/an/image.png", ...ot be loaded!"); }) .appendTo("body");

[img image.png]

The image cannot be loaded!

.scroll()

If the document is scrolled, the scroll event is fired. To bind a handler to this event, use the .scroll()
method:

$(window)
 .scroll(function(){
 console.log("The window was scrolled!");
 });

After executing this code, scrolling the browser window will cause a message to be logged in the
console.

Additionally, calling the .scroll() method without any parameters will trigger the scroll event to
fire. After binding the preceding handler to the window, trigger the event by running the following:

$(window).scroll();

Executing this code will log the scroll event handler’s message in the console.

Handling Document Loading Events
Often, JavaScript needs to wait until the document is ready before executing any scripts. Also, when
users exit a page, sometimes it’s desirable to fire a function to ensure they meant to navigate away from
it.

.ready()

The .ready() method is used in nearly every jQuery script as a safeguard against the script executing too
early and, therefore, not performing properly. This method waits for the DOM to be ready for
manipulation before firing its handler.

Common practice is to make the entire script a callback function to be fired by the .ready()
handler:

$(document).ready(function(){
 // All jQuery functionality here
 });

Additionally, the .ready() method accepts a parameter to use as an alias for the jQuery function.
This allows you to write failsafe jQuery scripts that will work as expected even if the $ alias is given back

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

73

to another library using jQuery.noConflict() (which allows for multiple JavaScript libraries that use the
$ alias to be used on the same project without issue).

You can guarantee the $ alias will work using the following:

jQuery.ready(function($){
 // All jQuery functionality here
 $("p").fadeOut();
 });

Technically, any alias can be passed here:

jQuery(document).ready(function(xTest){
 xTest("#bar").click(function(){console.log("Clicked!");});
 });

This performs as expected, with no errors. There aren’t many cases in which this check would be
necessary, but it illustrates how the alias works with the .ready() method.

Finally, the jQuery function itself can be used as an alias for .ready():

jQuery(function($){
 // actions to perform after the DOM is ready
 });

.unload()

The unload event is triggered whenever a user exits a page by clicking a link, reloading the page, using
the forward or back buttons, or closing the window entirely. However, the handling of unload is not
consistent across all browsers. And therefore should be tested in multiple browsers before being used in
production scripts.To create a link to Google and attach an alert to the unload event, use the following
code:

$("<a>", {
 "href":"http://google.com",
 "text":"Go to Google!"
 })
 .appendTo("#bar");
$(window).unload(function(){
 alert("Bye! Google something neat!");
 });

Execute this code, and click the new link. The alert fires, and you’re redirected to the Google home
page.

Handling Event Attachment
There are a whole slew of browser events triggered by the user, and jQuery provides several methods to
handle them easily.

http://google.com

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

74

The available events are blur, focus, focusin, focusout, load, resize, scroll, unload, click,
dblclick, mousedown, mouseup, mousemove, mouseover, mouseout, mouseenter, mouseleave, change, select,
submit, keydown, keypress, keyup, and error.

.bind() and .unbind()

To bind an event handler to an element, the .bind() method is used. It accepts an event as its first
argument and a handler function as the second argument.

Multiple events can be bound using a space separated list of events as the first argument as well. To
bind different handlers to different events, a JSON-formatted object can be passed to .bind() as well.

To bind a console message log to the click event, use the following:

$("p")
 .bind("click", function(){
 console.log("Click happened!");
 });

Clicking a paragraph after running this code will result in a message being logged to the console.
To bind a handler to both the click and mouseover events, use the following:

$("p")
 .bind("click mouseover", function(){
 console.log("An event happened!");
 });

Now, either clicking or hovering over a paragraph will log a message in the console.
If the handler needs to have data passed to it, an additional parameter is available. This is a JSON-

formatted object containing variables to be used in the function. These variables are bound to the event
object so that the values remain intact within the given handler.

Set a click handler for two paragraphs in the test document with identical functionality but
different log messages using the following:

// Create a value for the notice variable
var notice = "I live in a variable!";
$("p.foo").bind("click", { n:notice }, function(event){
 console.log(event.data.n);
 });

// Change the value of the notice variable
var notice = "I live in a variable too!";
$("#bar").bind("click", { n:notice }, function(event){
 console.log(event.data.n);
 });

To bind different handlers to the click and mouseover events, you would use this:

$("p")
 .bind({
 "click":function(){
 console.log("Click happened!");
 },

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

75

 "mouseover":function(){
 console.log("Mouseover happened!");
 }
 });

After execution, a different message will be logged to the console for each event when it occurs.
To remove an event, simply call the .unbind() method. If called with no parameters, all event

bindings are removed from an element. To specify, the name of the event to unbind can be passed as the
first argument. To further specify, the function to be removed from the event can be passed as a second
argument.

To unbind all events from the paragraphs in your example, use the following:

$("p").unbind();

To only remove the click event handler, use this code:

$("p").unbind("click");

Or, if a specific function was bound to an element, it could be unbound like so:

var func1 = function(){
 console.log("An event was triggered!");
 },
 func2 = function(){
 console.log("Another handler!");
 };
$("#bar")
 .bind("click", func1)
 .bind("click", func2)
 .trigger("click") // fire the event once
 .unbind("click", func1);

The preceding code will create two functions (stored in the func1and func2 variables), bind them to
the click event for the paragraph with ID bar, trigger the event once (you’ll learn about .trigger() later
in this section), and unbind the function stored in func1.

After running this code, clicking the paragraph will fire only the function stored in func2.

.live() and .die()

Similar to .bind() and .unbind(), .live() and .die() will attach and remove event handlers from
elements, respectively. The main difference is that .live() will attach handlers and JavaScript
properties not only to existing events but to any new elements added to the DOM that match the selector
afterward as well.

For instance, add a click event handler for any anchor elements using the following:

$("a")
 .live("click", function(){
 console.log("Link clicked!");
 return false; // prevent the link from firing
 });

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

76

Of course, there are not any links on the example page at the moment. Without reloading, add an
anchor tag to the paragraph with ID bar using the following:

$("<a>", {
 "href":"http://google.com",
 "text":"Go to Google!"
 })
 .appendTo("#bar");

The new link appears, and even though the event was bound before any anchor tags existed in the
DOM, clicking the link results in a message logged in the console and the link not firing.

Performing the previous action using .bind() does not work. Additionally, the click event handler
bound with .live() cannot be removed with .unbind(); to remove the event, you must use .die(). The
use of .die() is the same as that of .unbind().

.one()

The function and use of the .one() method is identical to that of .bind(), except that the event handler is
unbound after one occurrence of the event.

Add a new click event handler for the paragraph with ID bar that will only fire once using the
following:

$("#bar").one("click", function(){
 console.log("This will only fire once.");
 });

After execution, clicking the paragraph with ID bar results in one message logged to the console,
with subsequent clicks having no effect.

.toggle()

The .toggle() function allows developers to bind two or more functions to the click event to be fired on
alternating clicks. Alternatively, the function can be used to toggle visibility of elements (like toggling
.show() and .hide()—similar to how .slideToggle() alternatively performs the functionality of
.slideUp() and .slideDown() when called).

First, bind three different log messages to the click event for the paragraph with ID bar using the
following:

$("#bar")
 .toggle(function(){
 console.log("Function 1");
 },
 function(){
 console.log("Function 2");
 },
 function(){
 console.log("Function 3");
 });

http://google.com

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

77

After execution, upon clicking the paragraph with ID bar, the three messages are logged in
succession on consequent clicks.

Next, toggle the visibility of the paragraph with ID bar with the following code:

$("#bar").toggle();

Firing this function hides the paragraph. Firing it again brings it back. By adding the duration as the
first argument, the method will animate the element as it’s hidden or shown:

$("#bar").toggle(2000);

Last, a Boolean flag can be passed to determine whether all elements should be shown or hidden:

$("#bar").toggle(true); // all elements will be shown
$("#bar").toggle(false); // all elements will be hidden

.trigger()

To trigger an event, the .trigger() method is used. This method accepts an event to trigger and an
optional array of arguments to be passed to the handler.

Bind a handler to the paragraph with ID bar, and trigger it using the following code:

$("#bar")
 .bind("click", function(){
 console.log("Clicked!");
 })
 .trigger("click");

To pass additional data, modify the code as follows:

// create a variable
var note = "I was triggered!";
$("#bar")
 .bind("click", function(event, msg){ // allow a 2nd argument
 // If no msg variable is passed, a default message
 var log = msg || "I was clicked!";
 console.log(log);
 })
 .trigger("click", [note]); // array passed in square brackets

This outputs the message stored in the note variable to the console.

Shortcut Event Methods
Every event has a shortcut method that accepts the handler function as an argument. If passed without
an argument, it calls .trigger() for its event type.

The available shortcut functions are .blur(), .focus(), .focusin(), .focusout(), .load(), .resize(),
.scroll(), .unload(), .click(), .dblclick(), .mousedown(), .mouseup(), .mousemove(), .mouseover(),
.mouseout(), .mouseenter(), .mouseleave(), .change(), .select(), .submit(), .keydown(), .keypress(),
.keyup(), and .error().

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

78

As an example, the following will bind a handler to the click event, and fire the event.

$("#bar").click(function(){ console.log("Clicked!"); }).click();

Using AJAX Controls
The last set of jQuery methods we’re going to cover are probably the most useful, and more than likely
played a large role in the widespread adoption of jQuery. The methods providing AJAX 4 functionality are
incredibly useful and, especially for anyone who has built AJAX scripts in plain JavaScript before, as easy
as pie.

■ Note For further reading on AJAX, see the Wikipedia article here:
http://en.wikipedia.org/wiki/AJAX_%programming %29

For this section, you'll need an external file to access using the AJAX controls. Create a new file in the
testing folder called ajax.php. Inside, insert the following code:

<?php

echo '<p class="ajax">This paragraph was loaded with AJAX.</p>',
 '<pre>GET variables: ', print_r($_GET, TRUE), '</pre>',
 '<pre>POST variables: ', print_r($_POST, TRUE), '</pre>';

?>

This file will be called by the various AJAX methods available in jQuery. It will show you the data
passed to the script for illustrative purposes.

$.ajax()
The low-level, or most basic, function for sending AJAX requests is $.ajax(). Notice that this function is
called without a selector, because it doesn’t apply to the jQuery object. AJAX actions are global functions,
carried out independently of the DOM.

The $.ajax() function accepts one argument: an object containing settings for the AJAX call. If
called without any settings, the method will load the current page and do nothing with the result.

4 http://en.wikipedia.org/wiki/Ajax_%28programming%29

http://en.wikipedia.org/wiki/AJAX_%programming
http://en.wikipedia.org/wiki/Ajax_%28programming%29

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

79

Quite a few settings are available for $.ajax(), not all of which are covered here or used in this book.
See http://api.jquery.com/jQuery.ajax for a full list of available settings. The most common follow:

• data: This describes any data to be sent to the remote script, either as a query
string (key1=val1&key2=val2) or as JSON ({"key1":"val1","key2":"val2"}).

• dataFilter(data, type): This callback allows prefiltering of data and is great for
sanitizing data as it comes from the remote script.

• dataType: This described the type of data expected from the request. jQuery makes
an intelligent guess if this is left undefined. The available types are "xml", "html",
"script", "json", "jsonp", and "text".

• error(XMLHttpRequest, textStatus, errorThrown): This callback is to be executed
in the event of a request error. The XMLHttpRequest object, a string communicating
the status of the request, and an error code are passed as arguments.

• success(data, textStatus, XMLHttpRequest): This callback is to be executed if the
request completes successfully. The data returned from the remote script, a string
communicating the status of the request, and the XMLHttpRequest object are
passed as arguments.

• type: This is the type of request to send. The default is GET, but POST is also
available. PUT and DELETE can be used but may not work properly in all browsers.

• url: This is the URL to which the request is to be sent.

To send a basic POST request to your sample script and load the results into the paragraph with ID
bar, you would use the following:

$.ajax({
 "type":"POST",
 "url":"ajax.php",
 "data":"var1=val1&var2=val2",
 "success":function(data){
 $("#bar")
 .css("background","yellow")
 .html(data);
 }
 });

After executing this code, the contents of the paragraph are replaced with the loaded information
(see Figure 2-22).

http://api.jquery.com/jQuery.ajax

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

80

Figure 2-22. The loaded AJAX information from ajax.php

$.ajaxSetup()
To set default options for AJAX calls, the $.ajaxSetup() function is used. For instance, to specify that, by
default, all AJAX requests should be sent to ajax.php using POST and then loaded into the paragraph with
ID bar, the following would be used:

$.ajaxSetup({
 "type":"POST",
 "url":"ajax.php",
 "success":function(data){
 $("#bar")
 .css("background","yellow")
 .html(data);
 }
 });

Now, new AJAX requests can be made easily by simply passing new data:

$.ajax({
 "data":{
 "newvar1":"value1",
 "newvar2":"value2"
 }
 });

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

81

This results in the paragraph’s contents being replaced with new content from ajax.php (see
Figure 2-23).

Figure 2-23. The result of an AJAX call after setting default options

These defaults can be overwritten in subsequent calls to $.ajax() by simply redefining the option in
the new call:

$.ajax({
 "type":"GET",
 "data":{
 "newvar1":"value3",
 "newvar2":"value4"
 }
 });

This results in the data being sent using GET (see Figure 2-24).

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

82

Figure 2-24. The result after overriding the default type option with GET

Using Shorthand AJAX Methods
There are several simple, one-use functions, available for performing common AJAX tasks. In a nutshell,
these shorthand methods are simply wrapper functions that call $.ajax() with some of the parameters
already set.

Using these methods will incur a slight performance penalty, since you’re essentially calling a
method that sets up parameters and calls $.ajax() within itself. However, the convenience of using
shorthand methods really speeds up development in many scripts.

$.get() and $.post()

For standard GET and POST requests, the $.get() and $.post() functions are easy to use. Both take four
arguments: the URL to which the request is to be sent, optional data to be sent to the remote script, an
optional callback to be executed if the request is successful, and an optional dataType setting.

To load the result of ajax.php using GET with no data sent, use the following:

$.get("ajax.php", function(data){
 $("#bar")
 .css("background","yellow")
 .html(data);
 });

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

83

To send a request with data using POST, the following code could be used:

$.post("ajax.php", {"var1":"value"}, function(data){
 $("#bar")
 .css("background","yellow")
 .html(data);
 });

$.getJSON()

When loading JSON data, $.getJSON() is a shortcut function. It accepts the URL to which requests are
sent, optional data, and an optional callback function.

To run an example of this function, another test file needs to be created: create a new file called
json.php in the testing folder, and insert the following JSON into it:

{"var1":"value1","var2":"value2"}

Now, load the contents of json.php and output the contents in the paragraph with ID bar:

$.getJSON("json.php",
 function(data){
 $("#bar")
 .css("background","yellow")
 .html(data.var1+", "+data.var2);
 });

Upon execution, the contents of the paragraph will be replaced with the string "value1, value2".

$.getScript()

To load external JavaScript, use the $.getScript() function. This accepts a URL to which the request is
sent and an optional callback (which is generally not needed, as the script will execute automatically on
a successful load).

Create a new file called script.php in the testing folder, and insert the following:

alert("This script was loaded by AJAX!");

Now, load this script by executing the following code in the console:

$.getScript("script.php");

Upon execution, the alert fires.

.load()

The .load() method works just like $.get() or $.post(), except it’s a method instead of a global
function. It has an implicit callback, which is to replace the HTML of the matched elements with the
content returned from the remote file.

The method accepts the same three arguments: destination URL, optional data, and an optional
callback (which fires after the element content has been replaced).

Load the contents of ajax.php in the paragraph with ID bar after sending some data using this code:

CHAPTER 2 ■ COMMON JQUERY ACTIONS AND METHODS

84

$("#bar").load("ajax.php", {"var1":"value1"});

After running this snippet, the content of the paragraph is replaced with the returned result.

Summary
This chapter was intense and covered an awful lot of ground. Remember to check the jQuery API
documentation online for more examples, further explanation, and discussion by other developers in
the community. To search a method, simply add its name to the end of the API’s URL; for instance, to
look up the .slideup() method, navigate to http://api.jquery.com/slideup in your browser.

In the next part of this book, you’ll brush up on your PHP skills, including object-oriented
programming, before jumping into the backend development of the events calendar you’ll be building
from Chapter 4 on.

http://api.jquery.com/slideup

P A R T 2
■ ■ ■

Getting Into Advanced PHP
Programming

At this point, you’re going to put your new jQuery knowledge aside for a bit and focus

on the backend using PHP. Part 2 teaches you how to plan and implement an object-

oriented backend solution for an events calendar that you will later enhance using

your new knowledge of jQuery. This book assumes you have a reasonably sound grasp

on the basic concepts of PHP (variables, functions, the basic language constructs); to

brush up on your PHP basics, check out PHP for Absolute Beginners (Apress, 2009).

C H A P T E R 3

■ ■ ■

87

Object-Oriented Programming

In this chapter, you'’ll learn the concepts behind object-oriented programming (OOP), a style of coding
in which related actions are grouped into classes to aid in creating more-compact, effective code.

The backend of the project you’ll be building in this book is heavily based on OOP, so the concepts
covered in this chapter will be referenced often throughout the rest of the exercises you’ll complete.

Understanding Object-Oriented Programming
As stated above, object-oriented programming is a style of coding that allows developers to group
similar tasks into classes. This helps keep code following the tenant “don’t repeat yourself” (DRY) and
easy-to-maintain.

■ Note For further reading on DRY programming, see
http://en.wikipedia.org/wiki/Don't_repeat_yourself

One of the major benefits of DRY programming is that, if a piece of information changes in your
program, usually only one change is required to update the code. One of the biggest nightmares for
developers is maintaining code where data is declared over and over again, meaning any changes to the
program become an infinitely more frustrating game of Where’s Waldo? as they hunt for duplicated data
and functionality.

OOP is intimidating to a lot of developers because it introduces new syntax and, at a glace, appears
to be far more complex than simple procedural, or inline, code. However, upon closer inspection, OOP
is actually a very straightforward and ultimately simpler approach to programming.

Understanding Objects and Classes
Before you can get too deep into the finer points of OOP, a basic understanding of the components of
objects and classes is necessary. This section will go over the building blocks of classes, their different
capabilities, and some of their uses.

http://en.wikipedia.org/wiki/Don't_repeat_yourself

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

88

Recognizing the Differences Between Objects and Classes
Right off the bat, there’s confusion in OOP: seasoned developers start talking about objects and classes,
and they appear to be interchangeable terms. This is not the case, however, though the difference can be
tough to wrap your head around at first.

A class, for example, is like a blueprint for a house. It defines the shape of the house on paper, with
relationships between the different parts of the house clearly defined and planned out, even though the
house doesn’t exist.

An object, then, is like the actual house built according to that blueprint. The data stored in the
object is like the wood, wires, and concrete that compose the house: without being assembled according
to the blueprint, it’s just a pile of stuff. However, when it all comes together, it becomes an organized,
useful house.

Classes form the structure of data and actions and use that information to build objects. More than
one object can be built from the same class at the same time, each one independent of the others.
Continuing with our construction analogy, it’s similar to the way an entire subdivision can be built from
the same blueprint: 150 different houses that all look the same but have different families and
decorations inside.

Structuring Classes
The syntax to create a class is pretty straightforward: declare a class using the class keyword, followed by
the name of the class and a set of curly braces ({}):

<?php

class MyClass
{
 // Class properties and methods go here
}

?>

After creating the class, a new class can be instantiated and stored in a variable using the new

keyword:

$obj = new MyClass;

To see the contents of the class, use var_dump():

var_dump($obj);

Try out this process by putting all the preceding code in a new file called test.php in the testing

folder:

<?php

class MyClass
{
 // Class properties and methods go here
}

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

89

$obj = new MyClass;

var_dump($obj);

?>

Load the page in your browser at http://localhost/testing/test.php and the following should

display:

object(MyClass)#1 (0) { }

In its simplest form, you’ve just completed your first OOP script.

Defining Class Properties
To add data to a class, properties, or class-specific variables, are used. These work exactly like regular
variables, except they’re bound to the object and therefore can only be accessed using the object.

To add a property to MyClass, add the following bold code to your script:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";
}

$obj = new MyClass;

var_dump($obj);

?>

The keyword public determines the visibility of the property, which you’ll learn about a little later in

this chapter. Next, the property is named using standard variable syntax, and a value is assigned (though
class properties do not need an initial value).

To read this property and output it to the browser, reference the object from which to read and the
property to be read:

echo $obj->prop1;

Because multiple instances of a class can exist, if the individual object is not referenced, the script

would be unable to determine which object to read from. The use of the arrow (->) is an OOP construct
that accesses the contained properties and methods of a given object.

Modify the script in test.php to read out the property rather than dumping the whole class by
modifying the line in bold:

<?php

http://localhost/testing/test.php

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

90

class MyClass
{
 public $prop1 = "I'm a class property!";
}

$obj = new MyClass;

echo $obj->prop1;

?>

Reloading your browser now outputs the following:

I'm a class property!

Defining Class Methods
Methods are class-specific functions. Individual actions that an object will be able to perform are
defined within the class as methods.

For instance, to create methods that would set and get the value of the class property $prop1, add
the following bold lines to your code:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

$obj = new MyClass;

echo $obj->prop1;

?>

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

91

■ Note OOP allows objects to reference themselves using $this. When working within a method, use $this in
the same way you would use the object name outside the class.

To use these methods, call them just like regular functions, but first, reference the object to which
they belong. Read the property from MyClass, change its value, and read it out again by making the
modifications shown in bold:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

$obj = new MyClass;

echo $obj->getProperty(); // Get the property value

$obj->setProperty("I'm a new property value!"); // Set a new one

echo $obj->getProperty(); // Read it out again to show the change

?>

Reload your browser, and you’ll see the following:

I'm a class property!

I'm a new property value!

The power of OOP becomes apparent when you’re using multiple instances of the same class. Add
an additional instance of MyClass into the mix and start setting and getting properties:

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

92

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

// Create two objects
$obj = new MyClass;
$obj2 = new MyClass;

// Get the value of $prop1 from both objects
echo $obj->getProperty();
echo $obj2->getProperty();

// Set new values for both objects
$obj->setProperty("I'm a new property value!");
$obj2->setProperty("I belong to the second instance!");

// Output both objects' $prop1 value
echo $obj->getProperty();
echo $obj2->getProperty();

?>

When you load the results in your browser, they read as follows:

I'm a class property!

I'm a class property!

I'm a new property value!

I belong to the second instance!

As you can see, OOP keeps objects as separate entities, which makes for easy separation of different
pieces of code into small, related bundles.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

93

To make the use of objects easier, PHP also provides a number of magic methods, or special
methods that are called when certain common actions occur within objects. This allows developers to
perform a number of useful tasks with relative ease.

Using Constructors and Destructors
When an object is instantiated, it’s often desirable to set a few things right off the bat. To handle this,
PHP provides the magic method __construct(), which is called automatically whenever a new object is
created.

For the purpose of illustrating the concept of constructors, add a constructor to MyClass that will
output a message whenever a new instance of the class is created:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

// Create a new object
$obj = new MyClass;

// Get the value of $prop1
echo $obj->getProperty();

// Output a message at the end of the file
echo "End of file.
";

?>

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

94

■ Note __CLASS__ is what’s called magic constant, which, in this case, returns the name of the class in which it
is called. There are several available magic constants, which you can read more about in the PHP manual at
http://us3.php.net/manual/en/language.constants.predefined.php.

Reloading the file in your browser will produce the following result:

The class "MyClass" was initiated!

I'm a class property!

End of file.

To call a function when the object is destroyed, the __destruct() magic method is available. This is
useful for class cleanup (closing a database connection, for instance).

Output a message when the object is destroyed by defining the magic method __destruct() in
MyClass:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

// Create a new object

http://us3.php.net/manual/en/language.constants.predefined.php

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

95

$obj = new MyClass;

// Get the value of $prop1
echo $obj->getProperty();

// Output a message at the end of the file
echo "End of file.
";

?>

With a destructor defined, reloading the test file results in the following output:

The class "MyClass" was initiated!

I'm a class property!

End of file.

The class "MyClass" was destroyed.

When the end of a file is reached, PHP automatically releases all resources that were used within it
to keep memory available. This triggers the destructor for the MyClass object.

To explicitly trigger the destructor, you can destroy the object using the function unset():

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

96

}

// Create a new object
$obj = new MyClass;

// Get the value of $prop1
echo $obj->getProperty();

// Destroy the object
unset($obj);

// Output a message at the end of the file
echo "End of file.
";

?>

Now the result changes to the following when loaded in your browser:

The class "MyClass" was initiated!

I'm a class property!

The class "MyClass" was destroyed.

End of file.

Converting to a String
To avoid an error if a script attempts to output MyClass as a string, another magic method is used called
__toString().

Without __toString(), attempting to output the object as a string results in a fatal error. Attempt to
use echo to output the object without a magic method in place:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

97

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

// Create a new object
$obj = new MyClass;

// Output the object as a string
echo $obj;

// Destroy the object
unset($obj);

// Output a message at the end of the file
echo "End of file.
";

?>

This results in the following:

The class "MyClass" was initiated!

Catchable fatal error: Object of class MyClass could not be converted to string in 

/Applications/XAMPP/xamppfiles/htdocs/testing/test.php on line 40

To avoid this error, add a __toString() method:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

98

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function __toString()
 {
 echo "Using the toString method: ";
 return $this->getProperty();
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

// Create a new object
$obj = new MyClass;

// Output the object as a string
echo $obj;

// Destroy the object
unset($obj);

// Output a message at the end of the file
echo "End of file.
";

?>

In this case, attempting to convert the object to a string results in a call to the getProperty()

method. Load the test script in your browser to see the result:

The class "MyClass" was initiated!

Using the toString method: I'm a class property!

The class "MyClass" was destroyed.

End of file.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

99

■ Tip In addition to the magic methods discussed in this section, several others are available. For a complete list
of magic methods, see the PHP manual page at http://us2.php.net/manual/en/language.oop5.magic.php.

Using Class Inheritance
Classes can inherit the methods and properties of another class using the extends keyword. For instance,
to create a second class that extends MyClass and adds a method, you would add the following to your
test file:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function __toString()
 {
 echo "Using the toString method: ";
 return $this->getProperty();
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

class MyOtherClass extends MyClass
{
 public function newMethod()
 {
 echo "From a new method in " . __CLASS__ . ".
";

http://us2.php.net/manual/en/language.oop5.magic.php

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

100

 }
}

// Create a new object
$newobj = new MyOtherClass;

// Output the object as a string
echo $newobj->newMethod();

// Use a method from the parent class
echo $newobj->getProperty();

?>

Upon reloading the test file in your browser, the following is output:

The class "MyClass" was initiated!

From a new method in MyOtherClass.

I'm a class property!

The class "MyClass" was destroyed.

Overwriting Inherited Properties and Methods
To change the behavior of an existing property or method in the new class, you can simply overwrite it
by declaring it again in the new class:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function __toString()
 {
 echo "Using the toString method: ";

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

101

 return $this->getProperty();
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

class MyOtherClass extends MyClass
{
 public function __construct()
 {
 echo "A new constructor in " . __CLASS__ . ".
";
 }

 public function newMethod()
 {
 echo "From a new method in " . __CLASS__ . ".
";
 }
}

// Create a new object
$newobj = new MyOtherClass;

// Output the object as a string
echo $newobj->newMethod();

// Use a method from the parent class
echo $newobj->getProperty();

?>

This changes the output in the browser to:

A new constructor in MyOtherClass.

From a new method in MyOtherClass.

I'm a class property!

The class "MyClass" was destroyed.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

102

Preserving Original Method Functionality While Overwriting Methods
To add new functionality to an inherited method while keeping the original method intact, use the
parent keyword with the scope resolution operator (::):

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function __toString()
 {
 echo "Using the toString method: ";
 return $this->getProperty();
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 public function getProperty()
 {
 return $this->prop1 . "
";
 }
}

class MyOtherClass extends MyClass
{
 public function __construct()
 {
 parent::__construct(); // Call the parent class's constructor
 echo "A new constructor in " . __CLASS__ . ".
";
 }

 public function newMethod()
 {
 echo "From a new method in " . __CLASS__ . ".
";
 }
}

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

103

// Create a new object
$newobj = new MyOtherClass;

// Output the object as a string
echo $newobj->newMethod();

// Use a method from the parent class
echo $newobj->getProperty();

?>

This outputs the result of both the parent constructor and the new class’s constructor:

The class "MyClass" was initiated!

A new constructor in MyOtherClass.

From a new method in MyOtherClass.

I'm a class property!

The class "MyClass" was destroyed.

Assigning the Visibility of Properties and Methods
For added control over objects, methods and properties are assigned visibility. This controls how and
from where properties and methods can be accessed. There are three visibility keywords: public,
protected, and private. In addition to its visibility, a method or property can be declared as static,
which allows them to be accessed without an instantiation of the class.

■ Note Visibility is a new feature as of PHP 5. For information on OOP compatibility with PHP 4, see the PHP
manual page at http://us2.php.net/manual/en/language.oop5.php.

Public Properties and Methods
All the methods and properties you’ve used so far have been public. This means that they can be
accessed anywhere, both within the class and externally.

http://us2.php.net/manual/en/language.oop5.php

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

104

Protected Properties and Methods
When a property or method is declared protected, it can only be accessed within the class itself or in
descendant classes (classes that extend the class containing the protected method).

Declare the getProperty() method as protected in MyClass and try to access it directly from outside
the class:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function __toString()
 {
 echo "Using the toString method: ";
 return $this->getProperty();
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 protected function getProperty()
 {
 return $this->prop1 . "
";
 }
}

class MyOtherClass extends MyClass
{
 public function __construct()
 {
 parent::__construct();
 echo "A new constructor in " . __CLASS__ . ".
";
 }

 public function newMethod()
 {
 echo "From a new method in " . __CLASS__ . ".
";

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

105

 }
}

// Create a new object
$newobj = new MyOtherClass;

// Attempt to call a protected method
echo $newobj->getProperty();

?>

Upon attempting to run this script, the following error shows up:

The class "MyClass" was initiated!

A new constructor in MyOtherClass.

Fatal error: Call to protected method MyClass::getProperty() from context '' in 

/Applications/XAMPP/xamppfiles/htdocs/testing/test.php on line 55

Now, create a new method in MyOtherClass to call the getProperty() method:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function __toString()
 {
 echo "Using the toString method: ";
 return $this->getProperty();
 }

 public function setProperty($newval)
 {

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

106

 $this->prop1 = $newval;
 }

 protected function getProperty()
 {
 return $this->prop1 . "
";
 }
}

class MyOtherClass extends MyClass
{
 public function __construct()
 {
 parent::__construct();
 echo "A new constructor in " . __CLASS__ . ".
";
 }

 public function newMethod()
 {
 echo "From a new method in " . __CLASS__ . ".
";
 }

 public function callProtected()
 {
 return $this->getProperty();
 }
}

// Create a new object
$newobj = new MyOtherClass;

// Call the protected method from within a public method
echo $newobj->callProtected();

?>

This generates the desired result:

The class "MyClass" was initiated!

A new constructor in MyOtherClass.

I'm a class property!

The class "MyClass" was destroyed.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

107

Private Properties and Methods
A property or method declared private is accessible only from within the class that defines it. This
means that even if a new class extends the class that defines a private property, that property or method
will not be available at all within the child class.

To demonstrate this, declare getProperty() as private in MyClass, and attempt to call
callProtected() from MyOtherClass:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function __toString()
 {
 echo "Using the toString method: ";
 return $this->getProperty();
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 private function getProperty()
 {
 return $this->prop1 . "
";
 }
}

class MyOtherClass extends MyClass
{
 public function __construct()
 {
 parent::__construct();
 echo "A new constructor in " . __CLASS__ . ".
";
 }

 public function newMethod()
 {

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

108

 echo "From a new method in " . __CLASS__ . ".
";
 }

 public function callProtected()
 {
 return $this->getProperty();
 }
}

// Create a new object
$newobj = new MyOtherClass;

// Use a method from the parent class
echo $newobj->callProtected();

?>

Reload your browser, and the following error appears:

The class "MyClass" was initiated!

A new constructor in MyOtherClass.

Fatal error: Call to private method MyClass::getProperty() from context 'MyOtherClass' in 

/Applications/XAMPP/xamppfiles/htdocs/testing/test.php on line 49

Static Properties and Methods
A method or property declared static can be accessed without first instantiating the class; you simply
supply the class name, scope resolution operator, and the property or method name.

One of the major benefits to using static properties is that they keep their stored values for the
duration of the script. This means that if you modify a static property and access it later in the script, the
modified value will still be stored.

To demonstrate this, add a static property called $count and a static method called plusOne() to
MyClass. Then set up a do...while loop to output the incremented value of $count as long as the value is
less than 10:

<?php

class MyClass
{
 public $prop1 = "I'm a class property!";

 public static $count = 0;

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

109

 public function __construct()
 {
 echo 'The class "', __CLASS__, '" was initiated!
';
 }

 public function __destruct()
 {
 echo 'The class "', __CLASS__, '" was destroyed.
';
 }

 public function __toString()
 {
 echo "Using the toString method: ";
 return $this->getProperty();
 }

 public function setProperty($newval)
 {
 $this->prop1 = $newval;
 }

 private function getProperty()
 {
 return $this->prop1 . "
";
 }

 public static function plusOne()
 {
 return "The count is " . ++self::$count . ".
";
 }
}

class MyOtherClass extends MyClass
{
 public function __construct()
 {
 parent::__construct();
 echo "A new constructor in " . __CLASS__ . ".
";
 }

 public function newMethod()
 {
 echo "From a new method in " . __CLASS__ . ".
";
 }

 public function callProtected()
 {
 return $this->getProperty();
 }
}

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

110

do
{
 // Call plusOne without instantiating MyClass
 echo MyClass::plusOne();
} while (MyClass::$count < 10);

?>

■ Note When accessing static properties, the dollar sign ($) comes after the scope resolution operator.

When you load this script in your browser, the following is output:

The count is 1.

The count is 2.

The count is 3.

The count is 4.

The count is 5.

The count is 6.

The count is 7.

The count is 8.

The count is 9.

The count is 10.

Commenting with DocBlocks
While not an official part of OOP, the DocBlock commenting style is a widely accepted method of
documenting classes. Aside from providing a standard for developers to use when writing code, it has
also been adopted by many of the most popular SDKs (software development kits (SDKs), such as
Eclipse (available at http://eclipse.org) and NetBeans (available at http://netbeans.org), and will be
used to generate code hints.

A DocBlock is defined by using a block comment that starts with an additional asterisk:

/**
 * This is a very basic DocBlock

http://eclipse.org
http://netbeans.org

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

111

 */

The real power of DocBlocks comes with the ability to use tags, which start with an at symbol (@)

immediately followed by the tag name and the value of the tag. These allow developers to define authors
of a file, the license for a class, the property or method information, and other useful information.

The most common tags used follow:

@author: The author of the current element (which might be a class, file, method, or any bit of code)
are listed using this tag. Multiple author tags can be used in the same DocBlock if more than one
author is credited. The format for the author name is John Doe <john.doe@email.com>.

@copyright: This signifies the copyright year and name of the copyright holder for the current
element. The format is 2010 Copyright Holder.

@license: This links to the license for the current element. The format for the license information is
http://www.example.com/path/to/license.txt License Name.

@var: This holds the type and description of a variable or class property. The format is type element
description.

@param: This tag shows the type and description of a function or method parameter. The format is
type $element_name element description.

@return: The type and description of the return value of a function or method are provided in this
tag. The format is type return element description.

A sample class commented with DocBlocks might look like this:

<?php

/**
 * A simple class
 *
 * This is the long description for this class,
 * which can span as many lines as needed. It is
 * not required, whereas the short description is
 * necessary.
 *
 * It can also span multiple paragraphs if the
 * description merits that much verbiage.
 *
 * @author Jason Lengstorf <jason.lengstorf@ennuidesign.com>
 * @copyright 2010 Ennui Design
 * @license http://www.php.net/license/3_01.txt PHP License 3.01
 */
class SimpleClass
{
 /**
 * A public variable
 *
 * @var string stores data for the class
 */
 public $foo;

mailto:doe@email.com
http://www.example.com/path/to/license.txt
mailto:lengstorf@ennuidesign.com
http://www.php.net/license/3_01.txt

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

112

 /**
 * Sets $foo to a new value upon class instantiation
 *
 * @param string $val a value required for the class
 * @return void
 */
 public function __construct($val)
 {
 $this->foo = $val;
 }

 /**
 * Multiplies two integers
 *
 * Accepts a pair of integers and returns the
 * product of the two.
 *
 * @param int $bat a number to be multiplied
 * @param int $baz a number to be multiplied
 * @return int the product of the two parameters
 */
 public function bar($bat, $baz)
 {
 return $bat *$baz;
 }
}

?>

Once you scan the preceding class, the benefits of DocBlock are apparent: everything is clearly

defined so that the next developer can pick up the code and never have to wonder what a snippet of
code does or what it should contain.

■ Note For more information on DocBlocks, see http://en.wikipedia.org/wiki/PHPDoc

Comparing Object-Oriented and Procedural Code
There’s not really a right and wrong way to write code. That being said, this section outlines a strong
argument for adopting an object-oriented approach in software development, especially in large
applications.

http://en.wikipedia.org/wiki/PHPDoc

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

113

Ease of Implementation
While it may be daunting at first, OOP actually provides an easier approach to dealing with data. Because
an object can store data internally, variables don’t need to be passed from function to function to work
properly.

Also, because multiple instantiations of the same class can exist simultaneously, dealing with large
data sets is infinitely easier. For instance, imagine you have two people’s information being processed in
a file. They need names, occupations, and ages.

The Procedural Approach
Here’s the procedural approach to our example:

<?php

function changeJob($person, $newjob)
{
 $person['job'] = $newjob; // Change the person's job
 return $person;
}

function happyBirthday($person)
{
 ++$person['age']; // Add 1 to the person's age
 return $person;
}

$person1 = array(
 'name' => 'Tom',
 'job' => 'Button-Pusher',
 'age' => 34
);

$person2 = array(
 'name' => 'John',
 'job' => 'Lever-Puller',
 'age' => 41
);

// Output the starting values for the people
echo "<pre>Person 1: ", print_r($person1, TRUE), "</pre>";
echo "<pre>Person 2: ", print_r($person2, TRUE), "</pre>";

// Tom got a promotion and had a birthday
$person1 = changeJob($person1, 'Box-Mover');
$person1 = happyBirthday($person1);

// John just had a birthday
$person2 = happyBirthday($person2);

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

114

// Output the new values for the people
echo "<pre>Person 1: ", print_r($person1, TRUE), "</pre>";
echo "<pre>Person 2: ", print_r($person2, TRUE), "</pre>";

?>

When executed, the code outputs the following:

Person 1: Array

(

 [name] => Tom

 [job] => Button-Pusher

 [age] => 34

)

Person 2: Array

(

 [name] => John

 [job] => Lever-Puller

 [age] => 41

)

Person 1: Array

(

 [name] => Tom

 [job] => Box-Mover

 [age] => 35

)

Person 2: Array

(

 [name] => John

 [job] => Lever-Puller

 [age] => 42

)

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

115

While this code isn’t necessarily bad, there’s a lot to keep in mind while coding. The array of the
affected person’s attributes must be passed and returned from each function call, which leaves margin
for error.

To clean up this example, it would be desirable to leave as few things up to the developer as
possible. Only absolutely essential information for the current operation should need to be passed to the
functions.

This is where OOP steps in and helps you clean things up.

The OOP Approach
Here’s the OOP approach to our example:

<?php

class Person
{
 private $_name;
 private $_job;
 private $_age;

 public function __construct($name, $job, $age)
 {
 $this->_name = $name;
 $this->_job = $job;
 $this->_age = $age;
 }

 public function changeJob($newjob)
 {
 $this->_job = $newjob;
 }

 public function happyBirthday()
 {
 ++$this->_age;
 }
}

// Create two new people
$person1 = new Person("Tom", "Button-Pusher", 34);
$person2 = new Person("John", "Lever Puller", 41);

// Output their starting point
echo "<pre>Person 1: ", print_r($person1, TRUE), "</pre>";
echo "<pre>Person 2: ", print_r($person2, TRUE), "</pre>";

// Give Tom a promotion and a birthday
$person1->changeJob("Box-Mover");
$person1->happyBirthday();

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

116

// John just gets a year older
$person2->happyBirthday();

// Output the ending values
echo "<pre>Person 1: ", print_r($person1, TRUE), "</pre>";
echo "<pre>Person 2: ", print_r($person2, TRUE), "</pre>";

?>

This outputs the following in the browser:

Person 1: Person Object

(

 [_name:private] => Tom

 [_job:private] => Button-Pusher

 [_age:private] => 34

)

Person 2: Person Object

(

 [_name:private] => John

 [_job:private] => Lever Puller

 [_age:private] => 41

)

Person 1: Person Object

(

 [_name:private] => Tom

 [_job:private] => Box-Mover

 [_age:private] => 35

)

Person 2: Person Object

(

 [_name:private] => John

 [_job:private] => Lever Puller

 [_age:private] => 42

)

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

117

There’s a little bit more setup involved to make the approach object oriented, but after the class is
defined, creating and modifying people is a breeze; a person’s information does not need to be passed or
returned from methods, and only absolutely essential information is passed to each method.

On the small scale, this difference may not seem like much, but as your applications grow in size,
OOP will significantly reduce your workload if implemented properly

■ Tip Not everything needs to be object oriented. A quick function that handles something small in one place
inside the application does not necessarily need to be wrapped in a class. Use your best judgment when deciding
between object-oriented and procedural approaches.

Better Organization
Another benefit of OOP is how well it lends itself to being easily packaged and cataloged. Each class can
generally be kept in its own separate file, and if a uniform naming convention is used, accessing the
classes is extremely simple.

Assume you’ve got an application with 150 classes that are called dynamically through a controller
file at the root of your application filesystem. All 150 classes follow the naming convention
class.classname.inc.php and reside in the inc folder of your application.

The controller can implement PHP’s __autoload() function to dynamically pull in only the classes it
needs as they are called, rather than including all 150 in the controller file just in case or coming up with
some clever way of including the files in your own code:

<?php
 function __autoload($class_name)
 {
 include_once 'inc/class.' . $class_name . '.inc.php';
 }
?>

Having each class in a separate file also makes code more portable and easier to reuse in new

applications without a bunch of copying and pasting.

Easier Maintenance
Due to the more compact nature of OOP when done correctly, changes in the code are usually much
easier to spot and make than in a long spaghetti code procedural implementation.

If a particular array of information gains a new attribute, a procedural piece of software may require
(in a worst-case scenario) that the new attribute be added to each function that uses the array.

An OOP application could potentially be updated as easily adding the new property and then adding
the methods that deal with said property.

A lot of the benefits covered in this section are the product of OOP in combination with DRY
programming practices. It is definitely possible to create easy-to-maintain procedural code that doesn’t
cause nightmares, and it is equally possible to create awful object-oriented code. This book will attempt
to demonstrate a combination of good coding habits in conjunction with OOP to generate clean code
that’s easy to read and maintain.

CHAPTER 3 ■ OBJECT-ORIENTED PROGRAMMING

118

Summary
At this point, you should feel comfortable with the object-oriented programming style. The whole core of
the event calendar’s backend will be based on OOP, so any concepts that may currently seem unclear
will be more thoroughly examined as the concepts from this chapter are put into a practical, real-world
example.

In the next chapter, you’ll start building the backend of the events calendar.

C H A P T E R 4

■ ■ ■

119

Build an Events Calendar

Now that you’re up to speed on the concept of object-oriented programming, you can start working on
the project that will be the meat and potatoes of this book: the events calendar. It all starts here, and as
this book progresses, you’ll be adding more and more functionality using both PHP and jQuery.

Planning the Calendar
Because you’re starting from absolute scratch, you need to take a minute to plan the application. This
application will be database-driven (using MySQL), so the planning will take part in two stages: first the
database structure and then a basic map of the application that will access and modify the database.

Defining the Database Structure
To make building the application much easier, the first thing you should plan is how the data will be
stored. This shapes everything in the application.

For a basic events calendar, all the information you’ll need to store is the following:

• event_id: An automatically incremented integer that uniquely identifies each
event

• event_title: The title of the event

• event_desc: A full description of the event

• event_start: The start time of the event (in format YYYY-MM-DD HH:MM:SS)

• event_end: The end time of the event (in format YYYY-MM-DD HH:MM:SS)

Creating the Class Map
The next step is to lay out the main class that will handle all the actions our application will perform
related to the calendar events. This class will be called Calendar; the methods and properties will be laid
out like so:

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

120

• Build the constructor.

• Make sure a database connection exists or create one.

• Set the following basic properties: a database object,

• the date to use, the month being viewed,

• the year to view,

• the number of days in the month, and the weekday on which the month
starts.

• Generate HTML to build the events form.

• Check if an event is being edited or created.

• Load event information into the form if editing is needed.

• Save new events in the database and sanitize input.

• Delete events from the database and confirm deletion.

• Load events information.

• Load events data from the database.

• Store each event as an array in the proper day for the month.

• Output HTML with calendar information. Using the events array, loop through
each day of the month and attach event titles and times where applicable.

• Display event information as HTML. Accept an event ID and load the description
and details for the event

Planning the Application’s Folder Structure
This application is going to be somewhat elaborate when it’s finished, so it’s worth taking a few minutes
to think about how files are going to be organized.

For the sake of security, everything possible will be kept out of the web root, or publicly available
folders: this includes database credentials, the core of the application, and the classes that will run it.
With nothing in the web root, mischievous users won’t be able to poke around in your folder structure
without being on the server itself, which is a good practice for security.

To start, you’ll have two folders: public to contain all files available for direct access by the
application’s users, such as CSS, the index file, and JavaScript files and sys to contain the nonpublic files,
such as database credentials, the application’s classes, and the core PHP files.

Public Files
The public folder will serve as the web root. When a user accesses your application’s URL, this is the
folder in which the server will look first. At the root level, it contains the files accessed by users to view
and manipulate the data stored in the database:

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

121

• index.php: This is the main file, which displays the month in calendar format with
event titles displayed in the box of the day on which they occur.

• view.php: If users clicks an event title, they’re taken to this page where the event’s
data is displayed in detail.

• admin.php: To create or modify new events, the form displayed on this page is
used.

• confirmdelete.php: To delete an event, the user must first confirm that choice by
submitting the confirmation form on this page.

The public folder will also have a subfolder called assets, which will contain additional files for the
site. Those files will be grouped by their usage, which in this section falls into four categories: common
files, CSS files, JavaScript files, and form-processing files.

Create four folders within assets called common, css, inc, and js. The common folder will store files that
will be used on all the publicly accessible pages (namely the header and footer of the app); the css folder
will store site style sheets; the inc folder will store files to process form-submitted input; and the js
folder will store site JavaScript files.

Nonpublic Application Files
The sys folder will be broken into three subfolders: class, which will store all class files for the
application (such as the Calendar class); config, which stores application configuration information
such as database credentials; and core, which holds the files that initialize the application.

When everything is organized and all files are created, the file structure will be well organized and
easy to scale in the future (see Figure 4-1).

Figure 4-1. The folder structure and files as they appear in NetBeans 6.8 on Mac

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

122

PUBLIC AND NONPUBLIC FOLDERS—WHY BOTHER?

You may be asking yourself right about now, “Why put in the extra effort to create public and nonpublic
folders? What's the benefit?”

To answer that question, you need to know a little bit about how web servers work. A server is essentially
a computer that stores files and serves selected files to a network (such as the World Wide Web) using a
network identifier (an IP address or a URL mapped to an IP address). Hundreds of web sites or other
applications can be hosted on one server, each in their own folder.

The server grants access to outside users to these public folders, which means all the files on the folder
can be accessed from the network to which the server is connected. In the case of files that contain
sensitive information, this isn’t always desirable.

Fortunately, files in a public folder can still access files outside of the public folder, even though the users
on the network cannot. This allows you to hide your sensitive data from the rest of the world, but keep it
accessible to your application.

There are other ways to hide this information, but simply keeping sensitive data nonpublic is the most
straightforward, surefire method of doing so.

Modifying the Development Environment
Because you’re using public and nonpublic folders for this application, a quick modification to your
development environment is necessary: you need to point the server to your public folder, rather that
the folder containing both.

In this section, you’ll learn how to point your server to the public folder.

■ Note You can skip this section and keep the sys folder inside the public folder without losing any functionality
in the application (keep in mind that file paths will differ from those used throughout the exercises in this book).
You will, however, open the application to potential security risks. It’s highly recommended that you take a minute
to follow these steps.

Local Development
To change the document root (public folder) in a local installation, you need to modify the server’s
configuration file. This book assumes Apache is being used as your server in the XAMPP stack, so you
need to locate the httpd.conf file (located at /xamppfiles/etc/httpd.conf on Mac,
/opt/lampp/etc/httpd.conf on Linux, and \xampp\apache\conf\httpd.conf on Windows).

Inside httpd.conf, search for the DocumentRoot directive. This is where you set the path to your
public folder. The file should look something like this:

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

123

DocumentRoot: The directory out of which you will serve your
documents. By default, all requests are taken from this directory, but
symbolic links and aliases may be used to point to other locations.

DocumentRoot "/Applications/XAMPP/xamppfiles/htdocs/public"

Additionally, search for a line in your httpd.conf file that references document root to set

permissions. It will look something like this:

<Directory "/Applications/XAMPP/xamppfiles/htdocs/public">

After locating and altering the paths above, restart Apache using the XAMPP control panel. Now, the

default folder accessed is the public folder of the application. To test this, create the file index.php and
add the following code snippet:

<?php echo "I'm the new document root!"; ?>

Navigate to document root of your development environment in a browser (localhost by default) to

make sure the reconfiguration worked (see Figure 4-2).

Figure 4-2. The public folder’s index file is displayed after reconfiguring Apache

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

124

Remote Development
Because remote development usually takes place on a hosting company’s server, the steps to point your
domain to the app’s public folder will vary from hosting provider to hosting provider, and therefore
won’t be covered in this book.

However, in many cases, the host will allow you to point a domain to a folder within your hosting
account. If this is the case, simply point the domain to the public folder, and everything should work
properly.

Some hosts do not allow access outside of document root. If this is the case with your hosting
provider, simply place the sys folder in the public folder and alter file paths accordingly.

Building the Calendar
With the folder structure ready and your development environment set up, it’s time to actually start
developing. We’ll cover each of the three event views (main view, single event view, and administrative
view) in steps, starting with the main calendar view.

Creating the Database
As with the application planning process, the first step in developing the application is to create the
database. In your local development environment, pull up phpMyAdmin (http://localhost/phpmyadmin
in XAMPP), and open the SQL tab (you can also execute these commands in a PHP script if not using
phpMyAdmin). Create the database, a table to store event data called events, and a few dummy entries
using the following SQL:

CREATE DATABASE IF NOT EXISTS `php-jquery_example`
 DEFAULT CHARACTER SET utf8
 COLLATE utf8_unicode_ci;

CREATE TABLE IF NOT EXISTS `php-jquery_example`.`events` (
 `event_id` INT(11) NOT NULL AUTO_INCREMENT,
 `event_title` VARCHAR(80) DEFAULT NULL,
 `event_desc` TEXT,
 `event_start` TIMESTAMP NOT NULL DEFAULT '0000-00-00 00:00:00',
 `event_end` TIMESTAMP NOT NULL DEFAULT '0000-00-00 00:00:00',

 PRIMARY KEY (`event_id`),
 INDEX (`event_start`)
) ENGINE=MyISAM CHARACTER SET utf8 COLLATE utf8_unicode_ci;

INSERT INTO `php-jquery_example`.`events`
 (`event_title`, `event_desc`, `event_start`, `event_end`) VALUES
 ('New Year's Day', 'Happy New Year!',
 '2010-01-01 00:00:00', '2010-01-01 23:59:59'),
 ('Last Day of January', 'Last day of the month! Yay!',
 '2010-01-31 00:00:00', '2010-01-31 23:59:59');

http://localhost/phpmyadmininXAMPP
http://localhost/phpmyadmininXAMPP

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

125

■ Note All the preceding commands are specific to MySQL. Since this book is focused on jQuery and PHP, I won’t
go into detail about MySQL here. For more information on MySQL, check out Beginning PHP and MySQL by Jason
Gilmore (Apress).

After you execute the preceding commands, a new database called php-jquery_example will appear
in the left-hand column. Click the database name to display the tables, and then click the events table to
view the entries you created (see Figure 4-3).

Figure 4-3. The database, table, and entries after they’re created

Connecting to the Database with a Class
Because you’ll be creating multiple classes in this application that need database access, it makes sense
to create an object that will open and store that database object. This object will be called DB_Connect,
and it will reside in the class folder with the name class.db_connect.inc.php
(/sys/class/class.db_connect.inc.php).

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

126

This class will have one property and one method, both of which are protected. The property will be
called $db and will store a database object. The method will be a constructor; this will accept an optional
database object to store in $db, or it will create a new PDO object if no database object is passed.

Insert the following code into class.db_connect.inc.php:

<?php

/**
 * Database actions (DB access, validation, etc.)
 *
 * PHP version 5
 *
 * LICENSE: This source file is subject to the MIT License, available
 * at http://www.opensource.org/licenses/mit-license.html
 *
 * @author Jason Lengstorf <jason.lengstorf@ennuidesign.com>
 * @copyright 2009 Ennui Design
 * @license http://www.opensource.org/licenses/mit-license.html
 */
class DB_Connect {

 /**
 * Stores a database object
 *
 * @var object A database object
 */
 protected $db;

 /**
 * Checks for a DB object or creates one if one isn't found
 *
 * @param object $dbo A database object
 */
 protected function __construct($dbo=NULL)
 {
 if (is_object($db))
 {
 $this->db = $db;
 }
 else
 {
 // Constants are defined in /sys/config/db-cred.inc.php
 $dsn = "mysql:host=" . DB_HOST . ";dbname=" . DB_NAME;
 try
 {
 $this->db = new PDO($dsn, DB_USER, DB_PASS);
 }
 catch (Exception $e)
 {
 // If the DB connection fails, output the error
 die ($e->getMessage());

http://www.opensource.org/licenses/mit-license.html
mailto:lengstorf@ennuidesign.com
http://www.opensource.org/licenses/mit-license.html

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

127

 }
 }
 }

}

?>

■ Note The preceding function uses constants that are not defined just yet. You’ll create the files to define these
constants in the next section.

Creating the Class Wrapper
To build the application itself, start by creating the file class.calendar.inc.php in the class folder that
resides within the non-public sys folder (/sys/class/class.calendar.inc.php). This class will extend the
DB_Connect class in order to have access to the database object. Open the file in your editor of choice and
create the Calendar class using the following code:

<?php

/**
 * Builds and manipulates an events calendar
 *
 * PHP version 5
 *
 * LICENSE: This source file is subject to the MIT License, available
 * at http://www.opensource.org/licenses/mit-license.html
 *
 * @author Jason Lengstorf <jason.lengstorf@ennuidesign.com>
 * @copyright 2009 Ennui Design
 * @license http://www.opensource.org/licenses/mit-license.html
 */
class Calendar extends DB_Connect
{
 // Methods and properties go here
}

?>

With the class created, you can start adding the properties and methods to the class.

Adding Class Properties
The Calendar class doesn’t need any public properties, and you won’t be extending it in the examples
contained within this book, so all class properties will be private.

http://www.opensource.org/licenses/mit-license.html
mailto:lengstorf@ennuidesign.com
http://www.opensource.org/licenses/mit-license.html

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

128

As defined in the section on planning, create the properties for the Calendar class:

<?php

class Calendar extends DB_Connect
{

 /**
 * The date from which the calendar should be built
 *
 * Stored in YYYY-MM-DD HH:MM:SS format
 *
 * @var string the date to use for the calendar
 */
 private $_useDate;

 /**
 * The month for which the calendar is being built
 *
 * @var int the month being used
 */
 private $_m;

 /**
 * The year from which the month's start day is selected
 *
 * @var int the year being used
 */
 private $_y;

 /**
 * The number of days in the month being used
 *
 * @var int the number of days in the month
 */
 private $_daysInMonth;

 /**
 * The index of the day of the week the month starts on (0-6)
 *
 * @var int the day of the week the month starts on
 */
 private $_startDay;

 // Methods go here
}

?>

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

129

■ Note For the sake of brevity, DocBlocks will be left out of repeated code snippets.

According to the original planning, the class properties are as follows:

• $_useDate: The date to use when building the calendar in YYYY-MM-DD HH:MM:SS
format

• $_m: The month to use when building the calendar

• $_y: The year to use when building the calendar

• $_daysInMonth: How many days are in the current month

• $_startDay: Index from 0–6 representing on what day of the week the month starts

Building the Constructor
Next, you can build the class constructor. Start out by declaring it:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 /**
 * Creates a database object and stores relevant data
 *
 * Upon instantiation, this class accepts a database object
 * that, if not null, is stored in the object's private $_db
 * property. If null, a new PDO object is created and stored
 * instead.
 *
 * Additional info is gathered and stored in this method,
 * including the month from which the calendar is to be built,
 * how many days are in said month, what day the month starts
 * on, and what day it is currently.
 *

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

130

 * @param object $dbo a database object
 * @param string $useDate the date to use to build the calendar
 * @return void
 */
 public function __construct($dbo=NULL, $useDate=NULL)
 {

 }

}

?>

The constructor will accept two optional parameters: the first is a database object, and the second is

the date around which the calendar display should be built.

Checking the Database Connection
To function properly, the class needs a database connection. The constructor will call the parent
constructor from DB_Connect to check for an existing database object and use that when available, or it
will create a new object if none is supplied.

Set up the call to make this check using the code shown in bold:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL)
 {
 /*
 * Call the parent constructor to check for
 * a database object
 */
 parent::__construct($dbo);
 }

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

131

}

?>

■ Note That the Calendar class constructor accepts an optional $dbo argument that is passed in turn to the
DB_Connect constructor. This allows you to create a database object and pass it for use in the class easily.

Creating a File to Store Database Credentials

To keep the database credentials separate from the rest of the application for easy maintenance, you
want to use a configuration file. Create a new file called db-cred.inc.php in the config folder
(/sys/config/db-cred.inc.php). Inside, create an array called $C (for constants), and store each piece of
data as a new key-value pair:

<?php

/*
 * Create an empty array to store constants
 */
$C = array();

/*
 * The database host URL
 */
$C['DB_HOST'] = 'localhost';

/*
 * The database username
 */
$C['DB_USER'] = 'root';

/*
 * The database password
 */
$C['DB_PASS'] = '';

/*
 * The name of the database to work with
 */
$C['DB_NAME'] = 'php-jquery_example';

?>

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

132

■ Note Initializing $C as an empty array is a safeguard against any tainted pieces of data being stored in $C and
defined as constants. This is a good habit, especially when dealing with sensitive data.

Save this file. If you’re not using XAMPP or if you’ve modified the default database credentials, you’ll
need to substitute your own host, username, password, and database name in the code.

Creating an Initialization File
At this point, your database credentials still aren’t stored as constants. You’ll be using an initialization
file to handle this.

An initialization file collects data, loads files, and organizes information for an application. In this
example, it will load and define all necessary constants, create a database object, and set up an
automatic loading function for classes. Other functionality will be added later on as it becomes
necessary.

Create a file called init.inc.php, and place it in the core folder (/sys/core/init.inc.php). Inside,
add the following:

<?php

/*
 * Include the necessary configuration info
 */
include_once '../sys/config/db-cred.inc.php';

/*
 * Define constants for configuration info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a PDO object
 */
$dsn = "mysql:host=" . DB_HOST . ";dbname=" . DB_NAME;
$dbo = new PDO($dsn, DB_USER, DB_PASS);

/*
 * Define the auto-load function for classes
 */
function __autoload($class)
{
 $filename = "../sys/class/class." . $class . ".inc.php";
 if (file_exists($filename))
 {

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

133

 include_once $filename;
 }
}

?>

An automatic loading function is called when a script attempts to instantiate a class that hasn’t been

loaded yet. It’s a convenient way to easily load classes into a script on demand. For more information on
automatic loading, visit http://php.net/autoload.

Creating an Index File to Pull It All Together
To see everything in action, modify index.php in the public folder. Inside, simply include the
initialization file and instantiate the Calendar class. Next, check if the class loaded properly, and output
the object’s structure if so:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Load the calendar for January
 */
$cal = new Calendar($dbo, "2010-01-01 12:00:00");

if (is_object ($cal))
{
 echo "<pre>", var_dump($cal), "</pre>";
}

?>

Once you navigate to http://localhost/, the following message is output:

object(Calendar)#2 (6) {

 ["_useDate:private"]=>

 NULL

 ["_m:private"]=>

 NULL

http://php.net/autoload
http://localhost

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

134

 ["_y:private"]=>

 NULL

 ["_daysInMonth:private"]=>

 NULL

 ["_startDay:private"]=>

 NULL

 ["db:protected"]=>

 object(PDO)#3 (0) {

 }

}

Setting Basic Properties
With all that infrastructure taken care of, you can get back to finishing the Calendar class’s constructor.

After checking the database object, the constructor needs to store several pieces of data about the
month with which it will be building a calendar.

First, it checks if a date was passed to the constructor; if so, that is stored in the $_useDate property;
otherwise, the current date is used.

Next, the date is converted to a UNIX timestamp (the number of seconds since the Unix epoch; read
more about this at http://en.wikipedia.org/wiki/Unix_time) before the month and year are extracted
and stored in $_m and $_y, respectively.

Finally, $_m and $_y are used to determine how many days are in the month being used and which
day of the week the month starts on.

The following bold code adds this functionality to the constructor:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

http://en.wikipedia.org/wiki/Unix_time

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

135

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL)
 {
 /*
 * Call the parent constructor to check for
 * a database object
 */
 parent::__construct($dbo);

 /*
 * Gather and store data relevant to the month
 */
 if (isset($useDate))
 {
 $this->_useDate = $useDate;
 }
 else
 {
 $this->_useDate = date('Y-m-d H:i:s');
 }

 /*
 * Convert to a timestamp, then determine the month
 * and year to use when building the calendar
 */
 $ts = strtotime($this->_useDate);
 $this->_m = date('m', $ts);
 $this->_y = date('Y', $ts);

 /*
 * Determine how many days are in the month
 */
 $this->_daysInMonth = cal_days_in_month(
 CAL_GREGORIAN,
 $this->_m,
 $this->_y
);

 /*
 * Determine what weekday the month starts on
 */
 $ts = mktime(0, 0, 0, $this->_m, 1, $this->_y);
 $this->_startDay = date('w', $ts);
 }

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

136

}

?>

Now all the properties that were previously NULL will have values when you reload

http://localhost/:

object(Calendar)#2 (6) {

 ["_useDate:private"]=>

 string(19) "2010-01-01 12:00:00"

 ["_m:private"]=>

 string(2) "01"

 ["_y:private"]=>

 string(4) "2010"

 ["_daysInMonth:private"]=>

 int(31)

 ["_startDay:private"]=>

 string(1) "5"

 ["db:protected"]=>

 object(PDO)#3 (0) {

 }

}

Loading Events Data
To load data about events, you need to create a new method to access the database and retrieve them.
Because event data will be accessed in two ways (the second of which will be addressed later in this
chapter), the act of loading data will be kept generic for easy reuse.

This method will be private and named _loadEventData(). It accepts one optional parameter—the
ID of an event—and follows these steps to load events:

http://localhost/:

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

137

1. Create a basic SELECT query to load the available fields from the events table.

2. Check if an ID was passed, and if so, add a WHERE clause to the query to return
only one event.

3. Otherwise, do both of the following:

• Find midnight of the first day of the month and 11:59:59PM on the last day
of the month.

• Add a WHERE...BETWEEN clause to only load dates that fall within the current
month.

4. Execute the query.

5. Return an associative array of the results.

All put together, this method looks like so:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 /**
 * Loads event(s) info into an array
 *
 * @param int $id an optional event ID to filter results
 * @return array an array of events from the database
 */
 private function _loadEventData($id=NULL)
 {
 $sql = "SELECT
 `event_id`, `event_title`, `event_desc`,
 `event_start`, `event_end`
 FROM `events`";

 /*
 * If an event ID is supplied, add a WHERE clause
 * so only that event is returned
 */

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

138

 if (!empty($id))
 {
 $sql .= "WHERE `event_id`=:id LIMIT 1";
 }

 /*
 * Otherwise, load all events for the month in use
 */
 else
 {
 /*
 * Find the first and last days of the month
 */
 $start_ts = mktime(0, 0, 0, $this->_m, 1, $this->_y);
 $end_ts = mktime(23, 59, 59, $this->_m+1, 0, $this->_y);
 $start_date = date('Y-m-d H:i:s', $start_ts);
 $end_date = date('Y-m-d H:i:s', $end_ts);

 /*
 * Filter events to only those happening in the
 * currently selected month
 */
 $sql .= "WHERE `event_start`
 BETWEEN '$start_date'
 AND '$end_date'
 ORDER BY `event_start`";
 }

 try
 {
 $stmt = $this->db->prepare($sql);

 /*
 * Bind the parameter if an ID was passed
 */
 if (!empty($id))
 {
 $stmt->bindParam(":id", $id, PDO::PARAM_INT);
 }

 $stmt->execute();
 $results = $stmt->fetchAll(PDO::FETCH_ASSOC);
 $stmt->closeCursor();

 return $results;
 }
 catch (Exception $e)
 {
 die ($e->getMessage());
 }
 }

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

139

}

?>

■ Note For the sake of brevity, nonreferenced methods are collapsed.

This method returns an array that, when using the test entries you entered into the database
previously, looks like this:

Array
(
 [0] => Array
 (
 [event_id] => 1
 [event_title] => New Year's Day
 [event_desc] => Happy New Year!
 [event_start] => 2010-01-01 00:00:00
 [event_end] => 2010-01-01 23:59:59
)

 [1] => Array
 (
 [event_id] => 2
 [event_title] => Last Day of January
 [event_desc] => Last day of the month! Yay!
 [event_start] => 2010-01-31 00:00:00
 [event_end] => 2010-01-31 23:59:59
)

)

Creating an Array of Event Objects for Use in the Calendar
The raw output of _loadEventData() isn’t immediately usable in the calendar. Because events need to be
displayed on the proper day, the events retrieved from _loadEventData() need to be grouped by the day
on which they occur. For easy reference, the event fields will be simplified as well.

The end goal is an array of events that will use the day of the month as its index, containing each
event as an object. The two test entries in your database should end up being stored like so when the
new method is complete:

Array
(
 [1] => Array
 (
 [0] => Event Object

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

140

 (
 [id] => 1
 [title] => New Year's Day
 [description] => Happy New Year!
 [start] => 2010-01-01 00:00:00
 [end] => 2010-01-01 23:59:59
)

)

 [31] => Array
 (
 [0] => Event Object
 (
 [id] => 2
 [title] => Last Day of January
 [description] => Last day of the month! Yay!
 [start] => 2010-01-31 00:00:00
 [end] => 2010-01-31 23:59:59
)

)

)

Creating an Event Class
To accomplish this, you must first create a new class called Event in the class folder
(/sys/class/class.event.inc.php). It will have five public properties: $id, $title, $description, $start,
and $end; and a constructor that will set each of those properties using the associative array returned by
the database query. Create the file, and insert the following code inside it:

<?php

/**
 * Stores event information
 *
 * PHP version 5
 *
 * LICENSE: This source file is subject to the MIT License, available
 * at http://www.opensource.org/licenses/mit-license.html
 *
 * @author Jason Lengstorf <jason.lengstorf@ennuidesign.com>
 * @copyright 2010 Ennui Design
 * @license http://www.opensource.org/licenses/mit-license.html
 */
class Event
{

 /**

http://www.opensource.org/licenses/mit-license.html
mailto:lengstorf@ennuidesign.com
http://www.opensource.org/licenses/mit-license.html

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

141

 * The event ID
 *
 * @var int
 */
 public $id;

 /**
 * The event title
 *
 * @var string
 */
 public $title;

 /**
 * The event description
 *
 * @var string
 */
 public $description;

 /**
 * The event start time
 *
 * @var string
 */
 public $start;

 /**
 * The event end time
 *
 * @var string
 */
 public $end;

 /**
 * Accepts an array of event data and stores it
 *
 * @param array $event Associative array of event data
 * @return void
 */
 public function __construct($event)
 {
 if (is_array($event))
 {
 $this->id = $event['event_id'];
 $this->title = $event['event_title'];
 $this->description = $event['event_desc'];
 $this->start = $event['event_start'];
 $this->end = $event['event_end'];
 }
 else

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

142

 {
 throw new Exception("No event data was supplied.");
 }
 }

}

?>

Creating the Method to Store Event Objects in an Array
Now that each event can be stored as an object, you can create the method that will loop through the
available events and store them in an array corresponding to the dates on which they occur. First, load
the event data from the database using _loadEventData(). Next, extract the day of the month from each
event’s start date and add a new value to the array at that day’s index. In the Calendar class, create a new
method called _createEventObj() and set it to private. Load the events from the database, and create the
new array using the following bold code:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 private function _loadEventData($id=NULL) {...}

 /**
 * Loads all events for the month into an array
 *
 * @return array events info
 */
 private function _createEventObj()
 {
 /*
 * Load the events array
 */
 $arr = $this->_loadEventData();

 /*

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

143

 * Create a new array, then organize the events
 * by the day of the month
 on which they occur
 */
 $events = array();
 foreach ($arr as $event)
 {
 $day = date('j', strtotime($event['event_start']));

 try
 {
 $events[$day][] = new Event($event);
 }
 catch (Exception $e)
 {
 die ($e->getMessage());
 }
 }
 return $events;
 }

}

?>

Now the events can be loaded and organized in such a way that the method to output the actual

calendar, HTML can easily put dates in the proper place.

Outputting HTML to Display the Calendar and Events
At this point, you have the database set up, test events stored, and methods in place to load and organize
the event data into an easy-to-use array. You’re ready to put the pieces together and build a calendar!

The calendar will be built by a public method called buildCalendar(). This will generate a calendar
with the following attributes:

• A heading that will show the month and year being displayed

• Weekday abbreviations to make the calendar look like a calendar

• Numbered boxes that contain events if they exist for the given date

To start, declare the buildCalendar() method in the Calendar class, and create the heading in an H2
element. Also, create an array of weekday abbreviations and loop through them to generate an
unordered list. Add the following bold code to do so:

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

144

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 /**
 * Returns HTML markup to display the calendar and events
 *
 * Using the information stored in class properties, the
 * events for the given month are loaded, the calendar is
 * generated, and the whole thing is returned as valid markup.
 *
 * @return string the calendar HTML markup
 */
 public function buildCalendar()
 {
 /*
 * Determine the calendar month and create an array of
 * weekday abbreviations to label the calendar columns
 */
 $cal_month = date('F Y', strtotime($this->_useDate));
 $weekdays = array('Sun', 'Mon', 'Tue',
 'Wed', 'Thu', 'Fri', 'Sat');

 /*
 * Add a header to the calendar markup
 */
 $html = "\n\t<h2>$cal_month</h2>";
 for ($d=0, $labels=NULL; $d<7; ++$d)
 {
 $labels .= "\n\t\t" . $weekdays[$d] . "";
 }
 $html .= "\n\t<ul class=\"weekdays\">"
 . $labels . "\n\t";

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

145

 /*
 * Return the markup for output
 */
 return $html;
 }

}

?>

Modifying the Index File
To see the output of the buildCalendar() method, you’ll need to modify index.php in the public folder to
call the method. Update the file with the code shown in bold:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Load the calendar for January
 */
$cal = new Calendar($dbo, "2010-01-01 12:00:00");

/*
 * Display the calendar HTML
 */
echo $cal->buildCalendar();

?>

Pull up the file in your browser to see the results so far (see Figure 4-4).

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

146

Figure 4-4. The heading and weekday abbreviations

Building the Calendar
The next step is to build the actual calendar days. Several steps need to be completed for this to work
out:

1. Create a new unordered list.

2. Set up a loop (with an iteration counter, a calendar date counter, today’s date,
and the month and year stored as variables) that runs as long as the calendar
date counter is less than the number of days in the month.

3. Add a fill class to the days of the week that occur before the first.

4. Add a today class if the current date is contained within the same month and
year and matches the date being generated.

5. Create an opening and closing list item tag for each day.

6. Check if the current calendar box falls within the current month, and add the
date if so.

7. Check if the current calendar box is a Saturday, and close the list and open a
new one if so.

8. Assemble the pieces of the list item and append them to the markup.

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

147

9. After the loop, run another loop to add filler days until the calendar week is
completed.

10. Close the final unordered list and return the markup.

To start, complete steps 1 and 2 by adding the following bold code to the buildCalendar() method:

 public function buildCalendar()
 {
 /*
 * Determine the calendar month and create an array of
 * weekday abbreviations to label the calendar columns
 */
 $cal_month = date('F Y', strtotime($this->_useDate));
 $weekdays = array('Sun', 'Mon', 'Tue',
 'Wed', 'Thu', 'Fri', 'Sat');

 /*
 * Add a header to the calendar markup
 */
 $html = "\n\t<h2>$cal_month</h2>";
 for ($d=0, $labels=NULL; $d<7; ++$d)
 {
 $labels .= "\n\t\t" . $weekdays[$d] . "";
 }
 $html .= "\n\t<ul class=\"weekdays\">"
 . $labels . "\n\t";

 /*
 * Create the calendar markup
 */
 $html .= "\n\t"; // Start a new unordered list
 for ($i=1, $c=1, $t=date('j'), $m=date('m'), $y=date('Y');
 $c<=$this->_daysInMonth; ++$i)
 {
 // More steps go here
 }

 /*
 * Return the markup for output
 */
 return $html;
 }

Next, add the bold code below to complete steps 3–5:

 public function buildCalendar()
 {
 /*
 * Determine the calendar month and create an array of
 * weekday abbreviations to label the calendar columns
 */

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

148

 $cal_month = date('F Y', strtotime($this->_useDate));
 $weekdays = array('Sun', 'Mon', 'Tue',
 'Wed', 'Thu', 'Fri', 'Sat');

 /*
 * Add a header to the calendar markup
 */
 $html = "\n\t<h2>$cal_month</h2>";
 for ($d=0, $labels=NULL; $d<7; ++$d)
 {
 $labels .= "\n\t\t" . $weekdays[$d] . "";
 }
 $html .= "\n\t<ul class=\"weekdays\">"
 . $labels . "\n\t";

 /*
 * Create the calendar markup
 */
 $html .= "\n\t"; // Start a new unordered list
 for ($i=1, $c=1, $t=date('j'), $m=date('m'), $y=date('Y');
 $c<=$this->_daysInMonth; ++$i)
 {
 /*
 * Apply a "fill" class to the boxes occurring before
 * the first of the month
 */
 $class = $i<=$this->_startDay ? "fill" : NULL;

 /*
 * Add a "today" class if the current date matches
 * the current date
 */
 if ($c==$t && $m==$this->_m && $y==$this->_y)
 {
 $class = "today";
 }

 /*
 * Build the opening and closing list item tags
 */
 $ls = sprintf("\n\t\t<li class=\"%s\">", $class);
 $le = "\n\t\t";

 // More steps go here
 }

 /*
 * Return the markup for output
 */
 return $html;
 }

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

149

To complete steps 6-10—actually build the dates; check if the week needs to wrap; assemble the

date markup; finish the last week out with filler, and return the markup—add the following bold code:

 public function buildCalendar()
 {
 /*
 * Determine the calendar month and create an array of
 * weekday abbreviations to label the calendar columns
 */
 $cal_month = date('F Y', strtotime($this->_useDate));
 $weekdays = array('Sun', 'Mon', 'Tue',
 'Wed', 'Thu', 'Fri', 'Sat');

 /*
 * Add a header to the calendar markup
 */
 $html = "\n\t<h2>$cal_month</h2>";
 for ($d=0, $labels=NULL; $d<7; ++$d)
 {
 $labels .= "\n\t\t" . $weekdays[$d] . "";
 }
 $html .= "\n\t<ul class=\"weekdays\">"
 . $labels . "\n\t";

 /*
 * Create the calendar markup
 */
 $html .= "\n\t"; // Start a new unordered list
 for ($i=1, $c=1, $t=date('j'), $m=date('m'), $y=date('Y');
 $c<=$this->_daysInMonth; ++$i)
 {
 /*
 * Apply a "fill" class to the boxes occurring before
 * the first of the month
 */
 $class = $i<=$this->_startDay ? "fill" : NULL;

 /*
 * Add a "today" class if the current date matches
 * the current date
 */
 if ($c+1==$t && $m==$this->_m && $y==$this->_y)
 {
 $class = "today";
 }

 /*
 * Build the opening and closing list item tags
 */
 $ls = sprintf("\n\t\t<li class=\"%s\">", $class);

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

150

 $le = "\n\t\t";

 /*
 * Add the day of the month to identify the calendar box
 */
 if ($this->_startDay<$i && $this->_daysInMonth>=$c)
 {
 $date = sprintf("\n\t\t\t%02d",$c++);
 }
 else { $date=" "; }

 /*
 * If the current day is a Saturday, wrap to the next row
 */
 $wrap = $i!=0 && $i%7==0 ? "\n\t\n\t" : NULL;

 /*
 * Assemble the pieces into a finished item
 */
 $html .= $ls . $date . $le . $wrap;
 }

 /*
 * Add filler to finish out the last week
 */
 while ($i%7!=1)
 {
 $html .= "\n\t\t<li class=\"fill\"> ";
 ++$i;
 }

 /*
 * Close the final unordered list
 */
 $html .= "\n\t\n\n";

 /*
 * Return the markup for output
 */
 return $html;
 }

Test the function as it stands now, and you’ll see the unordered lists in your browser (see

Figure 4-5).

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

151

Figure 4-5. The markup as generated by buildCalendar()

Displaying Events in the Calendar
Adding the events to the calendar display is as easy as loading the events array from _createEventObj()
and looping through the events stored in the index that matches the current day if any exist. Add event
data to the calendar markup using the following bold code:

 public function buildCalendar()
 {
 /*
 * Determine the calendar month and create an array of
 * weekday abbreviations to label the calendar columns
 */
 $cal_month = date('F Y', strtotime($this->_useDate));
 $weekdays = array('Sun', 'Mon', 'Tue',
 'Wed', 'Thu', 'Fri', 'Sat');

 /*
 * Add a header to the calendar markup

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

152

 */
 $html = "\n\t<h2>$cal_month</h2>";
 for ($d=0, $labels=NULL; $d<7; ++$d)
 {
 $labels .= "\n\t\t" . $weekdays[$d] . "";
 }
 $html .= "\n\t<ul class=\"weekdays\">"
 . $labels . "\n\t";

 /*
 * Load events data
 */
 $events = $this->_createEventObj();

 /*
 * Create the calendar markup
 */
 $html .= "\n\t"; // Start a new unordered list
 for ($i=1, $c=1, $t=date('j'), $m=date('m'), $y=date('Y');
 $c<=$this->_daysInMonth; ++$i)
 {
 /*
 * Apply a "fill" class to the boxes occurring before
 * the first of the month
 */
 $class = $i<=$this->_startDay ? "fill" : NULL;

 /*
 * Add a "today" class if the current date matches
 * the current date
 */
 if ($c+1==$t && $m==$this->_m && $y==$this->_y)
 {
 $class = "today";
 }

 /*
 * Build the opening and closing list item tags
 */
 $ls = sprintf("\n\t\t<li class=\"%s\">", $class);
 $le = "\n\t\t";

 /*
 * Add the day of the month to identify the calendar box
 */
 if ($this->_startDay<$i && $this->_daysInMonth>=$c)
 {
 /*
 * Format events data
 */
 $event_info = NULL; // clear the variable

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

153

 if (isset($events[$c]))
 {
 foreach ($events[$c] as $event)
 {
 $link = '<a href="view.php?event_id='
 . $event->id . '">' . $event->title
 . '';
 $event_info .= "\n\t\t\t$link";
 }
 }

 $date = sprintf("\n\t\t\t%02d",$c++);
 }
 else { $date=" "; }

 /*
 * If the current day is a Saturday, wrap to the next row
 */
 $wrap = $i!=0 && $i%7==0 ? "\n\t\n\t" : NULL;

 /*
 * Assemble the pieces into a finished item
 */
 $html .= $ls . $date . $event_info . $le . $wrap;
 }

 /*
 * Add filler to finish out the last week
 */
 while ($i%7!=1)
 {
 $html .= "\n\t\t<li class=\"fill\"> ";
 ++$i;
 }

 /*
 * Close the final unordered list
 */
 $html .= "\n\t\n\n";

 /*
 * Return the markup for output
 */
 return $html;
 }

■ Caution Don’t forget to add the new $event_info variable into the markup at the bottom of the loop!

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

154

When the database events are loaded into the calendar display, the titles show up next to the
appropriate date (see Figure 4-6).

Figure 4-6. An event title displayed next to the appropriate date

■ Note The linked event titles point to a file called view.php that doesn’t exist yet. This file will be built and
explained in the “Outputing HTML to Display Full Event Descriptions” section later in this chapter.

Making the Calendar Look Like a Calendar
At this point, your markup is proper and your events are there, but the generated code doesn’t look
much like a calendar at all.

To rectify this, you’ll now be taking a moment to complete the HTML markup and style the page
using CSS.

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

155

■ Note Because this book is not about CSS, the rules used won’t be explained in detail. For more information on
CSS, check out Beginning CSS Web Development by Simon Collison (Apress, 2006).

In a nutshell, the CSS file will do the following:

• Float each list item to the left.

• Adjust margins and borders to make the dates look like a traditional calendar.

• Add a hover effect so the day over which the mouse is hovering will be highlighted.

• Style event titles.

• Add hover effects for event titles as well.

• Add some CSS3 flair, including rounded corners and drop shadows, for fun.

■ Tip For more information on CSS3, visit http://css3.info/.

Create a new file called style.css in the css folder (/public/assets/css/style.css) and add the
following rules:

body {
 background-color: #789;
 font-family: georgia, serif;
 font-size: 13px;
}

#content {
 display: block;
 width: 812px;
 margin: 40px auto 10px;
 padding: 10px;
 background-color: #FFF;
 -moz-border-radius: 6px;
 -webkit-border-radius: 6px;
 border-radius: 6px;
 border:2px solid black;
 -moz-box-shadow: 0 0 14px #123;
 -webkit-box-shadow: 0 0 14px #123;
 box-shadow: 0 0 14px #123;
}

h2,p {
 margin: 0 auto 14px;

http://css3.info

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

156

 text-align: center;
}

ul {
 display: block;
 clear: left;
 height: 82px;
 width: 812px;
 margin: 0 auto;
 padding: 0;
 list-style: none;
 background-color: #FFF;
 text-align: center;
 border: 1px solid black;
 border-top: 0;
 border-bottom: 2px solid black;
}

li {
 position: relative;
 float: left;
 margin: 0;
 padding: 20px 2px 2px;
 border-left: 1px solid black;
 border-right: 1px solid black;
 width: 110px;
 height: 60px;
 overflow: hidden;
 background-color: white;
}

li:hover {
 background-color: #FCB;
 z-index: 1;
 -moz-box-shadow: 0 0 10px #789;
 -webkit-box-shadow: 0 0 10px #789;
 box-shadow: 0 0 10px #789;
}

.weekdays {
 height: 20px;
 border-top: 2px solid black;
}

.weekdays li {
 height: 16px;
 padding: 2px 2px;
 background-color: #BCF;
}

.fill {

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

157

 background-color: #BCD;
}

.weekdays li:hover,li.fill:hover {
 background-color: #BCD;
 -moz-box-shadow: none;
 -webkit-box-shadow: none;
 box-shadow: none;
}

.weekdays li:hover,.today {
 background-color: #BCF;
}

li strong {
 position: absolute;
 top: 2px;
 right: 2px;
}

li a {
 position: relative;
 display: block;
 border: 1px dotted black;
 margin: 2px;
 padding: 2px;
 font-size: 11px;
 background-color: #DEF;
 text-align: left;
 -moz-border-radius: 6px;
 -webkit-border-radius: 6px;
 border-radius: 6px;
 z-index: 1;
 text-decoration: none;
 color: black;
 font-weight: bold;
 font-style: italic;
}

li a:hover {
 background-color: #BCF;
 z-index: 2;
 -moz-box-shadow: 0 0 6px #789;
 -webkit-box-shadow: 0 0 6px #789;
 box-shadow: 0 0 6px #789;
}

Save the style sheet, and close it; you won’t need to modify it again in this chapter. In the next

section, you’ll create common files that will, among other things, include these styles into the page.

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

158

Creating the Common Files—Header and Footer
There are going to be multiple pages viewed by your users in this application, and they all need a
common set of HTML elements, style sheets, and more. To simplify maintenance as much as possible,
you’ll be using two files—header.inc.php and footer.inc.php—to contain those common elements.

First, create a file called header.inc.php in the common folder
(/public/assets/common/header.inc.php). This file will hold the DOCTYPE declaration for the HTML and
create a head section that contains a Content-Type meta tag, the document title, and links to any CSS files
required for the document.

Because the document title will vary from page to page, you’ll be setting a variable—$page_title—
to store each page’s title.

Also, because more than one CSS file may be needed for a page, an array of CSS file names will be
passed in a variable called $css_files and looped through to generate the proper markup.

Inside this file, place the following code:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title><?php echo $page_title; ?></title>
<?php foreach ($css_files as $css): ?>
 <link rel="stylesheet" type="text/css" media="screen,projection"
 href="assets/css/<?php echo $css; ?>" />
<?php endforeach; ?>
</head>

<body>

Next, create a file called footer.inc.php in the common folder

(/public/assets/common/footer.inc.php) to contain the closing parts of the markup.
For now, this file doesn’t need to do much: it simply closes the body and html tags opened in

header.inc.php. As you continue developing this application, more will be added here.
Insert the following into footer.inc.php:

</body>

</html>

Adding the Files to the Index
To bring the new pieces together, you’ll need to modify the index file. First, you’ll need to add values to
the $page_title and $css_files variables, and then you should include the header file.

Also, to wrap the page content, add in a new div with the ID content that wraps around the call to
buildCalendar().

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

159

Finally, add a call to the footer file to finish the page. When it’s completed, the index file will be
modified with the code shown in bold:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo, "2010-01-01 12:00:00");

/*
 * Set up the page title and CSS files
 */
$page_title = "Events Calendar";
$css_files = array('style.css');

/*
 * Include the header
 */
include_once 'assets/common/header.inc.php';

?>

<div id="content">
<?php

/*
 * Display the calendar HTML
 */
echo $cal->buildCalendar();

?>

</div><!-- end #content -->
<?php

/*
 * Include the footer
 */
include_once 'assets/common/footer.inc.php';

?>

After saving the changes, reload your browser to see the results (see Figure 4-7).

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

160

Figure 4-7. The calendar with the header, footer, and CSS styles applied

Outputing HTML to Display Full Event Descriptions
The next step in this application is to allow the user to view the details of an event. This will be done in
three steps:

1. Create a method to format an array of a single event’s data when loaded by ID.

2. Create a method to generate markup containing the data as loaded by the first
method.

3. Create a new file to display the markup generated by the second method.

Creating a Method to Format Single Event Data
Similar to _createEventObj(), the purpose of this method, which you’ll call _loadEventById(), is to
generate an Event object from the result set returned by _loadEventData().

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

161

Because the markup generation is fairly simple when only using one event, all this method will do is
load the desired event by its ID using _loadEventData() and then return the first—and only, due to the
LIMIT 1 clause—result from the method.

Add the following method to the Calendar class:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 /**
 * Returns a single event object
 *
 * @param int $id an event ID
 * @return object the event object
 */
 private function _loadEventById($id)
 {
 /*
 * If no ID is passed, return NULL
 */
 if (empty($id))
 {
 return NULL;
 }

 /*
 * Load the events info array
 */
 $event = $this->_loadEventData($id);

 /*
 * Return an event object

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

162

 */
 if (isset($event[0]))
 {
 return new Event($event[0]);
 }
 else
 {
 return NULL;
 }
 }

}

?>

When called, this method will return an object (for the ID of 1) that looks like this:

Event Object
(
 [id] => 1
 [title] => New Year's Day
 [description] => Happy New Year!
 [start] => 2010-01-01 00:00:00
 [end] => 2010-01-01 23:59:59
)

Creating a Method to Generate Markup
Now that an array of a single event’s data is available, you can build a new public method to format the
event data into HTML markup.

This method will be called displayEvent(); it will accept an event’s ID and generate HTML markup
using the following steps:

1. Load the event data using _loadEventById().

2. Use the start and end dates to generate strings to describe the event.

3. Return the HTML markup to display the event.

Create the displayEvent() method by adding the bold code to the Calendar class:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

163

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 /**
 * Displays a given event's information
 *
 * @param int $id the event ID
 * @return string basic markup to display the event info
 */
 public function displayEvent($id)
 {
 /*
 * Make sure an ID was passed
 */
 if (empty($id)) { return NULL; }

 /*
 * Make sure the ID is an integer
 */
 $id = preg_replace('/[^0-9]/', '', $id);

 /*
 * Load the event data from the DB
 */
 $event = $this->_loadEventById($id);

 /*
 * Generate strings for the date, start, and end time
 */
 $ts = strtotime($event->start);
 $date = date('F d, Y', $ts);
 $start = date('g:ia', $ts);
 $end = date('g:ia', strtotime($event->end));

 /*
 * Generate and return the markup
 */
 return "<h2>$event->title</h2>"
 . "\n\t<p class=\"dates\">$date, $start—$end</p>"
 . "\n\t<p>$event->description</p>";
 }

 private function _loadEventData($id=NULL) {...}

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

164

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

}

?>

Creating a New File to Display Full Events
To display the output of displayEvent(), you’ll create a new file. This file will be called view.php, and it
will reside in the public folder (/public/view.php).

This file will be called with a query string containing the ID of the event to be displayed. If no ID is
supplied, the user will be sent back out to the main view of the calendar.

At the top of view.php, check for an event ID, and then load the initialization file; the page title and
CSS file are set up in variables, and the header file is called. After that, a new instance of the Calendar
class is created.

Next, set up a new div with the ID of content and call the displayEvent() method. Add a link to go
back to the main calendar page, close the div, and include the footer.

All things considered, the file should end up looking like this:

<?php

/*
 * Make sure the event ID was passed
 */
if (isset($_GET['event_id']))
{
 /*
 * Make sure the ID is an integer
 */
 $id = preg_replace('/[^0-9]/', '', $_GET['event_id']);

 /*
 * If the ID isn't valid, send the user to the main page
 */
 if (empty($id))
 {
 header("Location: ./");
 exit;
 }
}
else
{
 /*
 * Send the user to the main page if no ID is supplied
 */
 header("Location: ./");
 exit;
}

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

165

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Output the header
 */
$page_title = "View Event";
$css_files = array("style.css");
include_once 'assets/common/header.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo);

?>

<div id="content">
<?php echo $cal->displayEvent($id) ?>

 « Back to the calendar
</div><!-- end #content -->

<?php

/*
 * Output the footer
 */
include_once 'assets/common/footer.inc.php';

?>

Test this file by going back to the main calendar and clicking an event title. The view.php file loads

and displays the event information in a format that matches the calendar (see Figure 4-8).

CHAPTER 4 ■ BUILD AN EVENTS CALENDAR

166

Figure 4-8. The event information displayed after clicking an event title

Summary
You now have a fully functional events calendar, which you created using object-oriented PHP and
MySQL. Along the way, you learned how to handle dates, how to organize entries into objects for easy
access, and how to output markup and stylesheets to resemble a traditional calendar. In the next
chapter, you’ll build controls to add, edit, and create events.

C H A P T E R 5

■ ■ ■

167

Add Controls to Create, Edit,
and Delete Events

Now that the calendar can be viewed, you need to add controls that will allow administrators to create,
edit, and delete events.

Generating a Form to Create or Edit Events
To edit an event or add new events to the calendar, you need to use a form. You do this by adding a
method called displayForm() that generates a form for editing and creating events to the Calendar class.

This simple method accomplishes the following tasks:

1. Checks for an integer passed as the event ID.

2. Instantiates empty variables for the different fields used to describe events.

3. Loads event data if an event ID was passed.

4. Stores event data in the variables instantiated earlier if it exists.

5. Outputs a form.

■ Note By explicitly sanitizing the event ID passed in the $_POST superglobal, you ensure that the ID is safe to use
since any non-integer values will be converted to 0.

You build the displayForm() method by adding the following bold code to the Calendar class:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

168

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 public function displayEvent($id) {...}

 /**
 * Generates a form to edit or create events
 *
 * @return string the HTML markup for the editing form
 */
 public function displayForm()
 {
 /*
 * Check if an ID was passed
 */
 if (isset($_POST['event_id']))
 {
 $id = (int) $_POST['event_id'];
 // Force integer type to sanitize data
 }
 else
 {
 $id = NULL;
 }

 /*
 * Instantiate the headline/submit button text
 */
 $submit = "Create a New Event";

 /*
 * If an ID is passed, loads the associated event
 */
 if (!empty($id))
 {
 $event = $this->_loadEventById($id);

 /*
 * If no object is returned, return NULL
 */
 if (!is_object($event)) { return NULL; }

 $submit = "Edit This Event";

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

169

 }

 /*
 * Build the markup
 */
 return <<<FORM_MARKUP

 <form action="assets/inc/process.inc.php" method="post">
 <fieldset>
 <legend>$submit</legend>
 <label for="event_title">Event Title</label>
 <input type="text" name="event_title"
 id="event_title" value="$event->title" />
 <label for="event_start">Start Time</label>
 <input type="text" name="event_start"
 id="event_start" value="$event->start" />
 <label for="event_end">End Time</label>
 <input type="text" name="event_end"
 id="event_end" value="$event->end" />
 <label for="event_description">Event Description</label>
 <textarea name="event_description"
 id="event_description">$event->description</textarea>
 <input type="hidden" name="event_id" value="$event->id" />
 <input type="hidden" name="token" value="$_SESSION[token]" />
 <input type="hidden" name="action" value="event_edit" />
 <input type="submit" name="event_submit" value="$submit" />
 or cancel
 </fieldset>
 </form>
FORM_MARKUP;
 }

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

}

?>

Adding a Token to the Form
If you look at the preceding form, there’s a hidden input named token that holds a session value, also
called token. This is a security measure to prevent cross-site request forgeries (CSRF), which are form
submissions that are faked by submitting a form to your app’s processing file from somewhere other
than the form itself. This is a common tactic used by spammers to send multiple forged entry
submissions, which is annoying, potentially harmful, and definitely undesirable.

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

170

This token is created by generating a random hash and storing it in the session, and then posting the
token along with the form data. If the token in the $_POST superglobal matches the one in the $_SESSION
superglobal, then it’s a reasonably sure bet that the submission is legitimate.

You add an anti-CSRF token into your application by modifying the initialization file with the code
shown in bold:

<?php

/*
 * Enable sessions
 */

session_start();

/*
 * Generate an anti-CSRF token if one doesn't exist
 */
if (!isset($_SESSION['token']))
{
 $_SESSION['token'] = sha1(uniqid(mt_rand(), TRUE));
}

/*
 * Include the necessary configuration info
 */
include_once '../sys/config/db-cred.inc.php'; // DB info

/*
 * Define constants for configuration info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a PDO object
 */
$dsn = "mysql:host=" . DB_HOST . ";dbname=" . DB_NAME;
$dbo = new PDO($dsn, DB_USER, DB_PASS);

/*
 * Define the auto-load function for classes
 */
function __autoload($class)
{
 $filename = "../sys/class/class." . $class . ".inc.php";
 if (file_exists($filename))
 {
 include_once $filename;
 }

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

171

}

?>

■ Caution You may want to include a time limit for tokens to increase security further. Making sure a token is no
older than 20 minutes, for instance, helps prevent a user from leaving a computer unattended and having a
mischievous user start poking around later. For more information on tokens and preventing CSRF, visit Chris
Shiflett’s blog and read his article on the topic at http://shiflett.org/csrf.

Creating a File to Display the Form
Now that the method exists to display the form, you need to create a file that will call that method. This
file will be called admin.php, and it will reside in the root level of the public folder (/public/admin.php).

Similar to view.php, this file accomplishes the following:

• Loads the initialization file.

• Sets up a page title and CSS file array.

• Includes the header.

• Creates a new instance of the Calendar class.

• Calls the displayForm() method.

• Includes the footer.

Next, add the following inside the new admin.php file:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Output the header
 */
$page_title = "Add/Edit Event";
$css_files = array("style.css");
include_once 'assets/common/header.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo);

http://shiflett.org/csrf

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

172

?>

<div id="content">
<?php echo $cal->displayForm(); ?>

</div><!-- end #content -->

<?php

/*
 * Output the footer
 */
include_once 'assets/common/footer.inc.php';

?>

After saving this code, navigate to http://localhost/admin.php to see the resulting form (see

Figure 5-1).

Figure 5-1. The form before adding any CSS styles

Adding a New Stylesheet for Administrative Features
Obviously, the preceding form needs some visual enhancement to make it more usable. However, this
form will ultimately be accessible only to administrators (because you don’t want just anyone making
changes to your calendar), so the CSS rules will be separated out to a separate stylesheet called
admin.css. You can find this file in the css folder (/public/assets/css/).

Again, since this book is not about CSS, the rules won’t be explained. Essentially, the following CSS
makes the form elements look more like what your user expects a form to look like; it also adds a couple
rules for elements that will be created shortly.

Now add the following code into admin.css:

fieldset {
 border: 0;

http://localhost/admin.php

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

173

}

legend {
 font-size: 24px;
 font-weight: bold;
}

input[type=text],input[type=password],label {
 display: block;
 width: 70%;
 font-weight: bold;
}

textarea {
 width: 99%;
 height: 200px;
}

input[type=text],input[type=password],textarea {
 border: 1px solid #123;
 -moz-border-radius: 6px;
 -webkit-border-radius: 6px;
 border-radius: 6px;
 -moz-box-shadow: inset 1px 2px 4px #789;
 -webkit-box-shadow: inset 1px 2px 4px #789;
 box-shadow: inset 1px 2px 4px #789;
 padding: 4px;
 margin: 0 0 4px;
 font-size: 16px;
 font-family: georgia, serif;
}

input[type=submit] {
 margin: 4px 0;
 padding: 4px;
 border: 1px solid #123;
 -moz-border-radius: 6px;
 -webkit-border-radius: 6px;
 border-radius: 6px;
 -moz-box-shadow: inset -2px -1px 3px #345,
 inset 1px 1px 3px #BCF,
 1px 2px 6px #789;
 -webkit-box-shadow: inset -2px -1px 3px #345,
 inset 1px 1px 3px #BCF,
 1px 2px 6px #789;
 box-shadow: inset -2px -1px 3px #345,
 inset 1px 1px 3px #BCF,
 1px 2px 6px #789;
 background-color: #789;
 font-family: georgia, serif;
 text-transform: uppercase;

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

174

 font-weight: bold;
 font-size: 14px;
 text-shadow: 0px 0px 1px #fff;
}

.admin-options {
 text-align: center;
}

.admin-options form,.admin-options p {
 display: inline;
}

a.admin {
 display: inline-block;
 margin: 4px 0;
 padding: 4px;
 border: 1px solid #123;
 -moz-border-radius: 6px;
 -webkit-border-radius: 6px;
 border-radius: 6px;
 -moz-box-shadow: inset -2px -1px 3px #345,
 inset 1px 1px 3px #BCF,
 1px 2px 6px #789;
 -webkit-box-shadow: inset -2px -1px 3px #345,
 inset 1px 1px 3px #BCF,
 1px 2px 6px #789;
 box-shadow: inset -2px -1px 3px #345,
 inset 1px 1px 3px #BCF,
 1px 2px 6px #789;
 background-color: #789;
 color: black;
 text-decoration: none;
 font-family: georgia, serif;
 text-transform: uppercase;
 font-weight: bold;
 font-size: 14px;
 text-shadow: 0px 0px 1px #fff;
}

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

175

Save this file, then add admin.css to the $css_files array in admin.php by making the changes shown
in bold:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Output the header
 */
$page_title = "Add/Edit Event";
$css_files = array("style.css", "admin.css");
include_once 'assets/common/header.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo);

?>

<div id="content">
<?php echo $cal->displayForm(); ?>

</div><!-- end #content -->

<?php

/*
 * Output the footer
 */
include_once 'assets/common/footer.inc.php';

?>

After saving the preceding code, reload http://localhost/admin.php to see the styled form (see

Figure 5-2).

http://localhost/admin.php

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

176

Figure 5-2. The form to add or edit events after applying CSS styles

Saving New Events in the Database
To save events entered in the form, you create a new method in the Calendar class called processForm()
that accomplishes the following:

• Sanitizes the data passed from the form via POST

• Determines whether an event is being edited or created

• Generates an INSERT statement if no event is being edited; or it generates an
UPDATE statement if an event ID was posted

• Creates a prepared statement and binds the parameters

• Executes the query and returns TRUE or the error message on failure

The following code creates the processForm() method in the Calendar class:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

177

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 public function displayEvent($id) {...}

 public function displayForm() {...}

 /**
 * Validates the form and saves/edits the event
 *
 * @return mixed TRUE on success, an error message on failure
 */
 public function processForm()
 {
 /*
 * Exit if the action isn't set properly
 */
 if ($_POST['action']!='event_edit')
 {
 return "The method processForm was accessed incorrectly";
 }

 /*
 * Escape data from the form
 */
 $title = htmlentities($_POST['event_title'], ENT_QUOTES);
 $desc = htmlentities($_POST['event_description'], ENT_QUOTES);
 $start = htmlentities($_POST['event_start'], ENT_QUOTES);
 $end = htmlentities($_POST['event_end'], ENT_QUOTES);

 /*
 * If no event ID passed, create a new event
 */
 if (empty($_POST['event_id']))
 {
 $sql = "INSERT INTO `events`
 (`event_title`, `event_desc`, `event_start`,
 `event_end`)
 VALUES
 (:title, :description, :start, :end)";
 }

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

178

 /*
 * Update the event if it's being edited
 */
 else
 {
 /*
 * Cast the event ID as an integer for security
 */
 $id = (int) $_POST['event_id'];
 $sql = "UPDATE `events`
 SET
 `event_title`=:title,
 `event_desc`=:description,
 `event_start`=:start,
 `event_end`=:end
 WHERE `event_id`=$id";
 }

 /*
 * Execute the create or edit query after binding the data
 */
 try
 {
 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(":title", $title, PDO::PARAM_STR);
 $stmt->bindParam(":description", $desc, PDO::PARAM_STR);
 $stmt->bindParam(":start", $start, PDO::PARAM_STR);
 $stmt->bindParam(":end", $end, PDO::PARAM_STR);
 $stmt->execute();
 $stmt->closeCursor();
 return TRUE;
 }
 catch (Exception $e)
 {
 return $e->getMessage();
 }
 }

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

}

?>

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

179

Adding a Processing File to Call the Processing Method
The form to add and edit events is submitted to a file called process.inc.php, which is located in the inc
folder (/public/assets/inc/process.inc.php). This file checks the submitted form data and saves or
updates entries by performing the following steps:

1. Enables the session.

2. Includes the database credentials and the Calendar class.

3. Defines constants (as occurs in the initialization file).

4. Creates an array that stores information about each action.

5. Verifies that the token was submitted and is correct, and that the submitted
action exists in the lookup array. If so, go to Step 6. If not, go to Step 7.

6. Creates a new instance of the Calendar class.

• Calls the processForm() method.

• Sends the user back to the main view or output an error on failure.

7. Sends the user back out to the main view with no action if the token doesn’t
match.

The array created in Step 4 allows you to avoid a long, repetitive string of if...elseif blocks to test
for each individual action. Using the action as the array key and storing the object, method name, and
page to which the user should be redirected as array values means that you can write a single block of
logic using the variables from the array.

Insert the following code into process.inc.php to complete the steps just described:

<?php

/*
 * Enable sessions
 */
session_start();

/*
 * Include necessary files
 */
include_once '../../../sys/config/db-cred.inc.php';

/*
 * Define constants for config info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a lookup array for form actions

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

180

 */
$actions = array(
 'event_edit' => array(
 'object' => 'Calendar',
 'method' => 'processForm',
 'header' => 'Location: ../../'
)
);

/*
 * Make sure the anti-CSRF token was passed and that the
 * requested action exists in the lookup array
 */
if ($_POST['token']==$_SESSION['token']
 && isset($actions[$_POST['action']]))
{
 $use_array = $actions[$_POST['action']];
 $obj = new $use_array['object']($dbo);
 if (TRUE === $msg=$obj->$use_array['method']())
 {
 header($use_array['header']);
 exit;
 }
 else
 {
 // If an error occured, output it and end execution
 die ($msg);
 }
}
else
{
 // Redirect to the main index if the token/action is invalid
 header("Location: ../../");
 exit;
}

function __autoload($class_name)
{
 $filename = '../../../sys/class/class.'
 . strtolower($class_name) . '.inc.php';
 if (file_exists($filename))
 {
 include_once $filename;
 }
}

?>

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

181

Save this file, and then navigate to http://localhost/admin.php and create a new event with the
following information:

• Event Title: Dinner Party

• Start Time: 2010-01-22 17:00:00

• End Time: 2010-01-22 19:00:00

• Description: Five-course meal with wine pairings at John’s house

After clicking the Create new event button, the calendar is updated with the new event (see
Figure 5-3).

Figure 5-3. The new event as it appears when hovered over

Adding a Button to the Main View to Create New Events
To make it easier for your authorized users to create new events, add a button to the calendar that takes
the user to the form in admin.php. Do this by creating a new private method called
_adminGeneralOptions() in the Calendar class:

http://localhost/admin.php

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

182

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 public function displayEvent($id) {...}

 public function displayForm() {...}

 public function processForm() {...}

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

 /**
 * Generates markup to display administrative links
 *
 * @return string markup to display the administrative links
 */
 private function _adminGeneralOptions()
 {
 /*
 * Display admin controls
 */
 return <<<ADMIN_OPTIONS

 + Add a New Event
ADMIN_OPTIONS;
 }

}

?>

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

183

■ Note Checks to ensure that this button is only displayed to authorized users will be added Chapter 6.

Next, modify the buildCalendar() method to call your new _adminGeneralOptions() method by
inserting the following bold code:

 public function buildCalendar()
 {
 // To save space, the bulk of this method has been omitted

 /*
 * Close the final unordered list
 */
 $html .= "\n\t\n\n";

 /*
 * If logged in, display the admin options
 */
 $admin = $this->_adminGeneralOptions();

 /*
 * Return the markup for output
 */
 return $html . $admin;
 }

Finally, add the admin stylesheet (admin.css) to index.php using the following code in bold to make

sure the link displays correctly:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo, "2010-01-01 12:00:00");

/*
 * Set up the page title and CSS files
 */
$page_title = "Events Calendar";
$css_files = array('style.css', 'admin.css');

/*
 * Include the header

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

184

 */
include_once 'assets/common/header.inc.php';

?>

<div id="content">
<?php

/*
 * Display the calendar HTML
 */
echo $cal->buildCalendar();

?>

</div><!-- end #content -->
<?php

/*
 * Include the footer
 */
include_once 'assets/common/footer.inc.php';

?>

Save the file and reload http://localhost/ to see the button (see Figure 5-4).

http://localhost

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

185

Figure 5-4. The Admin button appears in the bottom left of the calendar

Adding Edit Controls to the Full Event View
Next, you need to make it possible for authorized users to edit events. You will do this by adding a button
to the full view of an event in view.php.

However, unlike the simple link used to create a new option, an Edit button will require an actual
form submission. To keep this code manageable, you’ll create a new private method called
_adminEntryOptions() in the Calendar class that will generate the markup for the form.

For now, this form will simply return the form markup to display the Edit button. More will be
added to the form as you continue on through the exercises in this book.

You create this method by adding the following bold code to the Calendar class:

<?php

class Calendar extends DB_Connect
{

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

186

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 public function displayEvent($id) {...}

 public function displayForm() {...}

 public function processForm() {...}

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

 private function _adminGeneralOptions() {...}

 /**
 * Generates edit and delete options for a given event ID
 *
 * @param int $id the event ID to generate options for
 * @return string the markup for the edit/delete options
 */
 private function _adminEntryOptions($id)
 {
 return <<<ADMIN_OPTIONS

 <div class="admin-options">
 <form action="admin.php" method="post">
 <p>
 <input type="submit" name="edit_event"
 value="Edit This Event" />
 <input type="hidden" name="event_id"
 value="$id" />
 </p>
 </form>
 </div><!-- end .admin-options -->
ADMIN_OPTIONS;
 }

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

187

}

?>

Modifying the Full Event Display Method to Show Admin Controls
Before the Edit button will be displayed, the _adminEntryOptions() method needs to be called from
within the displayEvent() method. This is as simple as storing the return value of _adminEntryOptions()
in a variable, $admin, and outputting that variable along with the rest of the entry markup.

Add the following bold modifications to displayEvent() in the Calendar class:

 /**
 * Displays a given event's information
 *
 * @param int $id the event ID
 * @return string basic markup to display the event info
 */
 public function displayEvent($id)
 {
 /*
 * Make sure an ID was passed
 */
 if (empty($id)) { return NULL; }

 /*
 * Make sure the ID is an integer
 */
 $id = preg_replace('/[^0-9]/', '', $id);

 /*
 * Load the event data from the DB
 */
 $event = $this->_loadEventById($id); /*
 * Generate strings for the date, start, and end time
 */
 $ts = strtotime($event->start);
 $date = date('F d, Y', $ts);
 $start = date('g:ia', $ts);
 $end = date('g:ia', strtotime($event->end));

 /*
 * Load admin options if the user is logged in
 */
 $admin = $this->_adminEntryOptions($id);
 /*
 * Generate and return the markup
 */
 return "<h2>$event->title</h2>"
 . "\n\t<p class=\"dates\">$date, $start—$end</p>"

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

188

. "\n\t<p>$event->description</p>$admin";
 }

■ Note Make sure that you include the $admin variable at the end of the return string.

■ Note As with the Create a new entry button, checks will be added later to ensure that only authorized users see
the editing controls.

Adding the Admin Stylesheet to the Full Event View Page
The last step before the Edit button is ready for use is to include the admin.css stylesheet in the
$css_files variable of view.php:

<?php

/*
 * Make sure the event ID was passed
 */
if (isset($_GET['event_id']))
{
 /*
 * Collect the event ID from the URL string
 */
 $id = htmlentities($_GET['event_id'], ENT_QUOTES);
}
else
{
 /*
 * Send the user to the main page if no ID is supplied
 */
 header("Location: ./");
 exit;
}

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Output the header
 */
$page_title = "View Event";

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

189

$css_files = array("style.css", "admin.css");
include_once 'assets/common/header.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo);

?>

<div id="content">
<?php echo $cal->displayEvent($id) ?>

 « Back to the calendar
</div><!-- end #content -->

<?php

/*
 * Output the footer
 */
include_once 'assets/common/footer.inc.php';

?>

Save this file, then click an event to see the Edit button (see Figure 5-5).

Figure 5-5. The edit button as it appears when viewing a full event description

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

190

Clicking the Edit button will bring up the form on admin.php with all the event’s data loaded in the
form (see Figure 5-6).

Figure 5-6. The admin form when an event is being edited

Deleting Events
The last step in creating the Calendar class is to allow authorized users to delete events. Event deletion is
different from creating or editing events in that you want to confirm a user’s intentions before deleting
the event. Otherwise an accidental click could result in frustration and inconvenience for the user.

This means that you must implement the Delete button in two stages:

1. The Delete button is clicked, and the user is taken to a confirmation page.

2. The confirmation button is clicked, and the event is removed from the
database.

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

191

Generating a Delete Button
To start, add a Delete button to the full view edit controls by modifying _adminEntryOptions() in the
Calendar class with the code shown in bold:

 /**
 * Generates edit and delete options for a given event ID
 *
 * @param int $id the event ID to generate options for
 * @return string the markup for the edit/delete options
 */
 private function _adminEntryOptions($id)
 {
 return <<<ADMIN_OPTIONS

 <div class="admin-options">
 <form action="admin.php" method="post">
 <p>
 <input type="submit" name="edit_event"
 value="Edit This Event" />
 <input type="hidden" name="event_id"
 value="$id" />
 </p>
 </form>
 <form action="confirmdelete.php" method="post">
 <p>
 <input type="submit" name="delete_event"
 value="Delete This Event" />
 <input type="hidden" name="event_id"
 value="$id" />
 </p>
 </form>
 </div><!-- end .admin-options -->
ADMIN_OPTIONS;
 }

This adds a button that sends the user to a yet-to-be-created confirmation page called

confirmdelete.php, which you’ll build later in this section. After saving the preceding changes, you will
see both edit and delete options when viewing a full event description (see Figure 5-7).

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

192

Figure 5-7. The Delete button as it appears on the full event view

Creating a Method to Require Confirmation
When a user clicks the Delete button, he is sent to a confirmation page that contains a form to make sure
he really wants to delete the event. That form will be generated by a new public method in the Calendar
class called confirmDelete().

This method confirms that an event should be deleted by performing the following actions:

1. Checks if the confirmation form was submitted and a valid token was passed.
If so, go to Step 2. If not, go to Step 3.

2. Checks whether the button clicked was the Confirmation button.

• If so, it deletes the event.

• If not, it sends the user back out to the main calendar view.

3. It loads the event data and displays the confirmation form.

You accomplish the preceding steps by adding the new method, shown in bold, to the Calendar
class:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

193

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 public function displayEvent($id) {...}

 public function displayForm() {...}

 public function processForm() {...}

 /**
 * Confirms that an event should be deleted and does so
 *
 * Upon clicking the button to delete an event, this
 * generates a confirmation box. If the user confirms,
 * this deletes the event from the database and sends the
 * user back out to the main calendar view. If the user
 * decides not to delete the event, they're sent back to
 * the main calendar view without deleting anything.
 *
 * @param int $id the event ID
 * @return mixed the form if confirming, void or error if deleting
 */
 public function confirmDelete($id)
 {
 /*
 * Make sure an ID was passed
 */
 if (empty($id)) { return NULL; }

 /*
 * Make sure the ID is an integer
 */
 $id = preg_replace('/[^0-9]/', '', $id);

 /*
 * If the confirmation form was submitted and the form
 * has a valid token, check the form submission
 */
 if (isset($_POST['confirm_delete'])
 && $_POST['token']==$_SESSION['token'])
 {
 /*
 * If the deletion is confirmed, remove the event
 * from the database
 */
 if ($_POST['confirm_delete']=="Yes, Delete It")
 {
 $sql = "DELETE FROM `events`
 WHERE `event_id`=:id

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

194

 LIMIT 1";
 try
 {
 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(
 ":id",
 $id,
 PDO::PARAM_INT
);
 $stmt->execute();
 $stmt->closeCursor();
 header("Location: ./");
 return;
 }
 catch (Exception $e)
 {
 return $e->getMessage();
 }
 }

 /*
 * If not confirmed, sends the user to the main view
 */
 else
 {
 header("Location: ./");
 return;
 }
 }

 /*
 * If the confirmation form hasn't been submitted, display it
 */
 $event = $this->_loadEventById($id);

 /*
 * If no object is returned, return to the main view
 */
 if (!is_object($event)) { header("Location: ./"); }

 return <<<CONFIRM_DELETE

 <form action="confirmdelete.php" method="post">
 <h2>
 Are you sure you want to delete "$event->title"?
 </h2>
 <p>There is no undo if you continue.</p>
 <p>
 <input type="submit" name="confirm_delete"
 value="Yes, Delete It" />
 <input type="submit" name="confirm_delete"

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

195

 value="Nope! Just Kidding!" />
 <input type="hidden" name="event_id"
 value="$event->id" />
 <input type="hidden" name="token"
 value="$_SESSION[token]" />
 </p>
 </form>
CONFIRM_DELETE;
 }

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

 private function _adminGeneralOptions() {...}

 private function _adminEntryOptions($id) {...}

}

?>

Creating a File to Display the Confirmation Form
In order to call the confirmDelete() method, the file confirmdelete.php needs to be created. This file will
reside in the root level of the public folder (/public/confirmdelete.php), and it will be very similar to
index.php. This file accomplishes the following tasks:

• Ensures an event ID was passed and stored in the $id variable; sends the user to
the main view otherwise.

• Loads the initialization file.

• Creates a new instance of the Calendar object.

• Loads the return value of confirmDelete() into a variable, $markup.

• Defines the $page_title and $css_files variables and includes the header.

• Outputs the data stored in $markup.

• Outputs the footer.

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

196

■ Note The reason you load the output of confirmDelete() into a variable before including the header is
because the method sometimes uses header() to send the user elsewhere in the app; if the header file was
included before calling confirmDelete(), the script would fail in certain cases because no data can be output to
the browser before header() is called or a fatal error occurs. For more information on the header() function, visit
http://php.net/header

Now add the following code inside confirmdelete.php:

<?php

/*
 * Make sure the event ID was passed
 */
if (isset($_POST['event_id']))
{
 /*
 * Collect the event ID from the URL string
 */
 $id = (int) $_POST['event_id'];
}
else
{
 /*
 * Send the user to the main page if no ID is supplied
 */
 header("Location: ./");
 exit;
}

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo);
$markup = $cal->confirmDelete($id);

/*
 * Output the header
 */
$page_title = "View Event";
$css_files = array("style.css", "admin.css");

http://php.net/header

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

197

include_once 'assets/common/header.inc.php';

?>

<div id="content">
<?php echo $markup; ?>

</div><!-- end #content -->

<?php

/*
 * Output the footer
 */
include_once 'assets/common/footer.inc.php';

?>

Save this file, then test the system by deleting the “Dinner Party” entry. After showing you the full

event description, the calendar takes you to the confirmation form (see Figure 5-8).

Figure 5-8. The confirmation form a user sees after clicking the Delete button

After clicking the Yes, Delete It button, the event is removed from the calendar (see Figure 5-9).

CHAPTER 5 ■ ADD CONTROLS TO CREATE, EDIT, AND DELETE EVENTS

198

Figure 5-9. After the user confirms the deletion, the event is removed from the calendar

Summary
At this point, you have a fully functional events calendar. You’ve learned how to create a form to create,
edit, save, and delete events, including how to confirm event deletion. However, the administrative
controls are currently available to anyone who visits the site.

In the next chapter, you’ll build a class to grant authorized users access to your site’s administrative
controls.

C H A P T E R 6

■ ■ ■

199

Password Protecting
Sensitive Actions and Areas

Now that your app can add, edit, and remove events, you need to protect those actions by requiring
users to log in before they can make any changes. You’ll need to create a new table in the database and a
new class in the app to make this happen; you’ll also need to make a few modifications to existing files.

Building the Admin Table in the Database
To store information about users authorized to modify events, you’ll need to create a new database
table. This table will be called users, and it will store four pieces of information about each user: an ID,
name, password hash, and email address.

To create this table, navigate to http://localhost/phpmyadmin and select the SQL tab to execute the
following command:

CREATE TABLE IF NOT EXISTS `php-jquery_example`.`users` (
 `user_id` INT(11) NOT NULL AUTO_INCREMENT,
 `user_name` VARCHAR(80) DEFAULT NULL,
 `user_pass` VARCHAR(47) DEFAULT NULL,
 `user_email` VARCHAR(80) DEFAULT NULL,
 PRIMARY KEY (`user_id`),
 UNIQUE (`user_name`)
) ENGINE=MyISAM CHARACTER SET utf8 COLLATE utf8_unicode_ci;

After this code executes, select the php-jquery_example database from the left-hand column and

click the users table to view the new table (see Figure 6-1).

http://localhost/phpmyadmin

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

200

Figure 6-1. The users table as it appears in phpMyAdmin

Building a File to Display a Login Form
In order to log in, users will need access to a login form. This will be displayed on a page called
login.php, which is stored in the public folder (/public/login.php). This file will be similar to admin.php,
except it will simply output the form since none of its information is variable.

The form will accept a username and a password, and it will pass the session token and an action of
user_login, as well. Insert the following code into login.php to create this form:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Output the header
 */
$page_title = "Please Log In";
$css_files = array("style.css", "admin.css");
include_once 'assets/common/header.inc.php';

?>

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

201

<div id="content">

 <form action="assets/inc/process.inc.php" method="post">
 <fieldset>
 <legend>Please Log In</legend>
 <label for="uname">Username</label>
 <input type="text" name="uname"
 id="uname" value="" />
 <label for="pword">Password</label>
 <input type="password" name="pword"
 id="pword" value="" />
 <input type="hidden" name="token"
 value="<?php echo $_SESSION['token']; ?>" />
 <input type="hidden" name="action"
 value="user_login" />
 <input type="submit" name="login_submit"
 value="Log In" />
 or cancel
 </fieldset>
 </form>

</div><!-- end #content -->

<?php

/*
 * Output the footer
 */
include_once 'assets/common/footer.inc.php';

?>

Save this code and navigate to http://localhost/login.php in your browser to see the resulting

login form (see Figure 6-2).

Figure 6-2. The login form

http://localhost/login.php

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

202

Creating the Admin Class
With your table in place, you can now start structuring the class that will interact with it. In the class
folder, create a new file called class.admin.inc.php (/sys/class/class.admin.inc.php). This class will
contain methods to allow users to log in and log out.

Defining the Class
First, you define the class, which will extend DB_Connect in order to have database access. This class will
have one private property, $_saltLength, which you’ll learn about a little later in this section.

The constructor will call the parent constructor to ensure a database object exists, and then it will
check whether an integer was passed as the constructor’s second argument. If so, the integer is used as
the value of $_saltLength.

Now insert the following code into class.admin.inc.php to define the class, the property, and the
constructor:

<?php

/**
 * Manages administrative actions
 *
 * PHP version 5
 *
 * LICENSE: This source file is subject to the MIT License, available
 * at http://www.opensource.org/licenses/mit-license.html
 *
 * @author Jason Lengstorf <jason.lengstorf@ennuidesign.com>
 * @copyright 2010 Ennui Design
 * @license http://www.opensource.org/licenses/mit-license.html
 */
class Admin extends DB_Connect
{

 /**
 * Determines the length of the salt to use in hashed passwords
 *
 * @var int the length of the password salt to use
 */
 private $_saltLength = 7;

 /**
 * Stores or creates a DB object and sets the salt length
 *
 * @param object $db a database object
 * @param int $saltLength length for the password hash
 */
 public function __construct($db=NULL, $saltLength=NULL)
 {
 parent::__construct($db);

http://www.opensource.org/licenses/mit-license.html
mailto:lengstorf@ennuidesign.com
http://www.opensource.org/licenses/mit-license.html

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

203

 /*
 * If an int was passed, set the length of the salt
 */
 if (is_int($saltLength))
 {
 $this->_saltLength = $saltLength;
 }
 }

}

?>

Building a Method to Check the Login Credentials
The data from login.php needs to be validated in order to verify that a user is authorized to make
changes to the events table. You can follow these steps to accomplish this:

1. Verify that the form was submitted using the proper action.

2. Sanitize the user input with htmlentities().

3. Retrieve user data that has a matching username from the database.

4. Store the user information in a variable, $user, and make sure it isn’t empty.

5. Generate a salted hash from the user-supplied password and the password
stored in the database.

6. Make sure the hashes match.

7. Store user data in the current session using an array and return TRUE.

■ Note Salted hashes will be covered in the next section, “Build a Method to Create Salted Hashes.”

Start by defining the method in the Admin class and completing the preceding Steps 1 and 2 using
the following bold code:

<?php

class Admin extends DB_Connect
{

 private $_saltLength = 7;

 public function __construct($db=NULL, $saltLength=NULL) {...}

 /**

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

204

 * Checks login credentials for a valid user
 *
 * @return mixed TRUE on success, message on error
 */
 public function processLoginForm()
 {
 /*
 * Fails if the proper action was not submitted
 */
 if ($_POST['action']!='user_login')
 {
 return "Invalid action supplied for processLoginForm.";
 }

 /*
 * Escapes the user input for security
 */
 $uname = htmlentities($_POST['uname'], ENT_QUOTES);
 $pword = htmlentities($_POST['pword'], ENT_QUOTES);

 // finish processing...
 }

}

?>

Next, complete Steps 3 and 4 by adding the following code shown in bold:

 public function processLoginForm()
 {
 /*
 * Fails if the proper action was not submitted
 */
 if ($_POST['action']!='user_login')
 {
 return "Invalid action supplied for processLoginForm.";
 }

 /*
 * Escapes the user input for security
 */
 $uname = htmlentities($_POST['uname'], ENT_QUOTES);
 $pword = htmlentities($_POST['pword'], ENT_QUOTES);

 /*
 * Retrieves the matching info from the DB if it exists
 */
 $sql = "SELECT
 `user_id`, `user_name`, `user_email`, `user_pass`
 FROM `users`

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

205

 WHERE
 `user_name` = :uname
 LIMIT 1";
 try
 {
 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':uname', $uname, PDO::PARAM_STR);
 $stmt->execute();
 $user = array_shift($stmt->fetchAll());
 $stmt->closeCursor();
 }
 catch (Exception $e)
 {
 die ($e->getMessage());
 }

 /*
 * Fails if username doesn't match a DB entry
 */
 if (!isset($user))
 {
 return "Your username or password is invalid.";
 }

 // finish processing...
 }

Now the user’s data is stored in the variable $user (or the method failed because no match was

found for the supplied username in the users table).
Finishing Steps 5-7 completes the method; do this by adding the following bold code:

 public function processLoginForm()
 {
 /*
 * Fails if the proper action was not submitted
 */
 if ($_POST['action']!='user_login')
 {
 return "Invalid action supplied for processLoginForm.";
 }

 /*
 * Escapes the user input for security
 */
 $uname = htmlentities($_POST['uname'], ENT_QUOTES);
 $pword = htmlentities($_POST['pword'], ENT_QUOTES);

 /*
 * Retrieves the matching info from the DB if it exists
 */
 $sql = "SELECT

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

206

 `user_id`, `user_name`, `user_email`, `user_pass`
 FROM `users`
 WHERE
 `user_name` = :uname
 LIMIT 1";
 try
 {
 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':uname', $uname, PDO::PARAM_STR);
 $stmt->execute();
 $user = array_shift($stmt->fetchAll());
 $stmt->closeCursor();
 }
 catch (Exception $e)
 {
 die ($e->getMessage());
 }

 /*
 * Fails if username doesn't match a DB entry
 */
 if (!isset($user))
 {
 return "No user found with that ID.";
 }

 /*
 * Get the hash of the user-supplied password
 */
 $hash = $this->_getSaltedHash($pword, $user['user_pass']);

 /*
 * Checks if the hashed password matches the stored hash
 */
 if ($user['user_pass']==$hash)
 {
 /*
 * Stores user info in the session as an array
 */
 $_SESSION['user'] = array(
 'id' => $user['user_id'],
 'name' => $user['user_name'],
 'email' => $user['user_email']
);

 return TRUE;
 }

 /*
 * Fails if the passwords don't match
 */

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

207

 else
 {
 return "Your username or password is invalid.";
 }
 }

This method will now validate a login form submission. However, it doesn’t work just quite yet; first,

you need to build the _getSaltedHash() method.

Building a Method to Create Salted Hashes
In order to validate a user’s password hash stored in the database, you need a function to generate a
salted hash from the user’s supplied password (a hash is an encrypted string generated by a security
algorithm such as MD5 or SHA1).

■ Note For more information on password hashing and security algorithms, visit
http://en.wikipedia.org/wiki/Cryptographic_hash_function.

INCREASING SECURITY WITH SALTED PASSWORDS

Even though PHP provides functions to hash, or encrypt, strings, you should use additional security
measures to ensure that your information is entirely secure. One of the simplest and most effective ways
to heighten security is through the use of salts, which are additional strings used when hashing
passwords.

Using Rainbow Tables and Common Encryption Algorithms

Common encryptions algorithms, such as SHA1 and MD5, have been fully mapped using rainbow tables1,
which are reverse lookup tables for password hashes. In a nutshell, a rainbow table allows an attacker to
search for the hash produced by a given encryption algorithm in a large table that contains every possible
hash and a value that will produce that hash.

Rainbow tables have been generated for MD5 and SHA1, so it's possible for an attacker to crack your
users' passwords with relative ease if no extra security measures are taken.

1 http://en.wikipedia.org/wiki/Rainbow_table

http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Rainbow_table

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

208

Improving Security with Salted Hashes

While not bulletproof, adding a salt to your hashing algorithm will make cracking your users' passwords
much more cumbersome for attackers. A salt is a string, either predefined or random, that is used in
addition to the user input when hashing.

Without using a salt, a password may be hashed like this:

$hash = sha1($password);

To add a random salt to the preceding hash, you could apply the following this code to it:

$salt = substr(md5(time()), 0, 7); // create a random salt
$hash = $salt . sha1($salt . $password);

The preceding code generates a random seven-digit salt. The salt is prepended to the password string
before hashing; this means that even if two users have the same password, their individual password
hashes will be different.

However, in order to reproduce that hash, the salt needs to be available. For this reason, the salt is also
prepended, unencrypted, to the hash. This way, when a user signs in, you’re able to extract the salt from
the hash when it’s retrieved from the database and use it to recreate the salted hash of the user’s
password:

$salt = substr($dbhash, 0, 7); // extract salt from stored hash
$hash = $salt . sha1($salt . $_POST['password']);

if ($dbhash==$hash)
{
 echo "Match!";
}
else
{
 echo "No match.";
}

Incorporating Salted Hashes and Rainbow Tables

By adding a salt, rainbow tables are rendered useless. A new table will need to be generated taking the
salt into account in order to crack user passwords; while this isn’t impossible, it’s time-consuming for the
attacker and adds an extra layer of security to your app.

In most applications (especially those that don’t store much in the way of sensitive personal information
such as credit card information), a salted password is deterrent enough to ward off potential attackers.

As an additional countermeasure, it is also advisable to add a check for repeated failed attempts to log in.
This way, an attacker has a finite number of attempts to crack a password before being locked out of the
system. This can also prevent denial of service attacks, or attacks in which a huge volume of requests
are sent in an attempt to overload a site and take it offline.

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

209

Creating this function is relatively straightforward, requiring only a few steps:

1. Check whether a salt was supplied; if not, generate a new salt by hashing the
current UNIX timestamp, and then take a substring of the returned value at the
length specified in $_saltLength and store it as $salt.

2. Otherwise, take a substring of the supplied salted hash from the database at
the length specified in $_saltLength and store it as $salt.

3. Prepend the salt to the hash of the salt and the password, and return the new
string.

Complete all three steps by inserting the following method into the Admin class:

<?php

class Admin extends DB_Connect
{

 private $_saltLength = 7;

 public function __construct($db=NULL, $saltLength=NULL) {...}

 public function processLoginForm() {...}

 /**
 * Generates a salted hash of a supplied string
 *
 * @param string $string to be hashed
 * @param string $salt extract the hash from here
 * @return string the salted hash
 */
 private function _getSaltedHash($string, $salt=NULL)
 {
 /*
 * Generate a salt if no salt is passed
 */
 if ($salt==NULL)
 {
 $salt = substr(md5(time()), 0, $this->_saltLength);
 }

 /*
 * Extract the salt from the string if one is passed
 */
 else
 {
 $salt = substr($salt, 0, $this->_saltLength);
 }

 /*

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

210

 * Add the salt to the hash and return it
 */
 return $salt . sha1($salt . $string);
 }

}

?>

Creating a Test Method for Salted Hashes
To see how salted hashes work, create a quick test method for _getSaltedHash() called
testSaltedHash(). This will be a public function that calls and outputs the values, enabling you to see
how the script functions.

In the Admin class, define the testSaltedHash() method:

<?php

class Admin extends DB_Connect
{

 private $_saltLength = 7;

 public function __construct($db=NULL, $saltLength=NULL) {...}

 public function processLoginForm() {...}

 private function _getSaltedHash($string, $salt=NULL) {...}

 public function testSaltedHash($string, $salt=NULL)
 {
 return $this->_getSaltedHash($string, $salt);
 }

}

?>

Next, add a new file called test.php to use this function and place it in the public folder

(/public/test.php). Inside this function, call the initialization file, create a new Admin class, and output
three hashes of this word: test. Create the first hash with no salt, and then sleep for one second to get a
new timestamp. Create the second hash with no salt, and then sleep for another second. Finally, create
the third hash using the salt from the second hash. Insert the following code to accomplish this test:

<?php

// Include necessary files
include_once '../sys/core/init.inc.php';

// Load the admin object

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

211

$obj = new Admin($dbo);

// Load a hash of the word test and output it
$hash1 = $obj->testSaltedHash("test");
echo "Hash 1 without a salt:
", $hash1, "

";

// Pause execution for a second to get a different timestamp
sleep(1);

// Load a second hash of the word test
$hash2 = $obj->testSaltedHash("test");
echo "Hash 2 without a salt:
", $hash2, "

";

// Pause execution for a second to get a different timestamp
sleep(1);

// Rehash the word test with the existing salt
$hash3 = $obj->testSaltedHash("test", $hash2);
echo "Hash 3 with the salt from hash 2:
", $hash3;

?>

■ Note The sleep() function delays execution of a script by a given number of seconds, passed as its sole
argument. You can learn more about this function at http://php.net/sleep.

Your results will not be identical because the timestamp hashes used for the salt will differ; however,
your results should look something like this:

Hash 1 without a salt:

518fd85bb85815af85e88b7c43d892238af9a5ca5775807

Hash 2 without a salt:

93b14e3f42ca09cafc1330b592669a5d02e9815bc2f69de

Hash 3 with the salt from hash 2:

93b14e3f42ca09cafc1330b592669a5d02e9815bc2f69de

http://php.net/sleep

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

212

As you can see, hashes of the word test don’t match up when passed separately; however, if you
supply an existing salted hash of test, the same hash is produced. This way, even if two users have the
same password, their stored hashes will be different, making it much more difficult for potential
attackers to crack passwords.

■ Note Bear in mind that no algorithm is 100% effective. However, using techniques like salted hashes makes it
possible to reduce the possibility of an attack significantly.

Creating a User to Test Administrative Access
In order to test the administrative functions, you’ll need a username/password pair to exist in your users
table. For simplicity, the username will be testuser, the password will be admin, and the email address
will be admin@example.com. Keep in mind that this is not a secure password; it is being used for illustration
purposes only, and it should be changed before you use it with any production scripts.

Begin by generating a hash of the password, admin, which is easy using the test method
testSaltedHash() and test.php. Add the following bold code to test.php to generate a salted hash of
your test user’s password:

<?php

// Include necessary files
include_once '../sys/core/init.inc.php';

// Load the admin object
$obj = new Admin($dbo);

// Generate a salted hash of "admin"
$pass = $obj->testSaltedHash("admin");
echo 'Hash of "admin":
', $pass, "

";

?>

Navigate to http://localhost/test.php, and you’ll see output similar to the following:

Hash of "admin":

a1645e41f29c45c46539192fe29627751e1838f7311eeb4

Copy the hash, navigate to http://localhost/phpmyadmin, and then click the SQL tab. Execute the
following query to insert a test user into the table:

INSERT INTO `php-jquery_example`.`users`
 (`user_name`, `user_pass`, `user_email`)
VALUES

mailto:admin@example.com
http://localhost/test.php
http://localhost/phpmyadmin

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

213

 (
 'testuser',
 'a1645e41f29c45c46539192fe29627751e1838f7311eeb4',
 'admin@example.com'
);

After executing the preceding code, click the php-jquery_example database, and then the users table.

Select the Browse tab to view the user info in the table (see Figure 6-3).

Figure 6-3. The test user data after inserting it into the database

Now that a user exists in the user database with a salted hash stored, you can delete both the
testSaltedHash() method from the Admin class and the entire test.php file.

Modifying the App to Handle the Login Form Submission
At this point, you’re almost ready to test a user login. Before it will work, however, you need to modify
process.inc.php to handle form submissions from the login form.

Due to the way the file is set up, this change is as simple as adding a new element to the $actions
array. Open process.inc.php and insert the following bold code:

<?php

/*

mailto:admin@example.com

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

214

 * Enable sessions
 */
session_start();

/*
 * Include necessary files
 */
include_once '../../../sys/config/db-cred.inc.php';

/*
 * Define constants for config info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a lookup array for form actions
 */
$actions = array(
 'event_edit' => array(
 'object' => 'Calendar',
 'method' => 'processForm',
 'header' => 'Location: ../../'
),
 'user_login' => array(
 'object' => 'Admin',
 'method' => 'processLoginForm',
 'header' => 'Location: ../../'
)
);

/*
 * Make sure the anti-CSRF token was passed and that the
 * requested action exists in the lookup array
 */
if ($_POST['token']==$_SESSION['token']
 && isset($actions[$_POST['action']]))
{
 $use_array = $actions[$_POST['action']];
 $obj = new $use_array['object']($dbo);
 if (TRUE === $msg=$obj->$use_array['method']())
 {
 header($use_array['header']);
 exit;
 }
 else
 {
 // If an error occured, output it and end execution
 die ($msg);

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

215

 }
}
else
{
 // Redirect to the main index if the token/action is invalid
 header("Location: ../../");
 exit;
}

function __autoload($class_name)
{
 $filename = '../../../sys/class/class.'
 . strtolower($class_name) . '.inc.php';
 if (file_exists($filename))
 {
 include_once $filename;
 }
}

?>

Now you can officially test a login. Because no checks for a login are in place yet, simply add a

conditional comment in index.php to show login or logout status by inserting the following bold line into
the file:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo, "2010-01-01 12:00:00");

/*
 * Set up the page title and CSS files
 */
$page_title = "Events Calendar";
$css_files = array('style.css', 'admin.css');

/*
 * Include the header
 */
include_once 'assets/common/header.inc.php';

?>

<div id="content">

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

216

<?php

/*
 * Display the calendar HTML
 */
echo $cal->buildCalendar();

?>

</div><!-- end #content -->
<p>
<?php

 echo isset($_SESSION['user']) ? "Logged In!" : "Logged Out!";

?>
</p>

<?php

/*
 * Include the footer
 */
include_once 'assets/common/footer.inc.php';

?>

Now save this file and navigate to http://localhost/ to see the “Logged Out!” message below the

calendar (see Figure 6-4).

http://localhost

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

217

Figure 6-4. Before the user logs in, the “Logged Out!” message appears below the calendar

Next, navigate to http://localhost/login.php and enter the username testuser with the password,
admin (see Figure 6-5).

Figure 6-5. The login form with the username and password information entered

http://localhost/login.php

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

218

After clicking the Log In button, you’ll be redirected back to the calendar; however, now the
message below the calendar will read “Logged In!” (see Figure 6-6).

Figure 6-6. After the user logs in, the “Logged In!” message appears below the calendar

Allowing the User to Log Out
Next, you need to add a method that allows the user to log out. You will do this using a form that submits
information to process.inc.php. The method _adminGeneralOptions() in the Calendar class generates
the form.

Adding a Log Out Button to the Calendar
To add a button that allows users to log out, modify _adminGeneralOptions() in the Calendar class. In
addition to providing a button for adding new events, this method will now also output a form that
submits the site token and an action value of user_logout to process.inc.php. Open the Calendar class
and modify _adminGeneralOptions() with the following bold code:

 private function _adminGeneralOptions()
 {
 /*
 * Display admin controls

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

219

 */
 return <<<ADMIN_OPTIONS

 + Add a New Event
 <form action="assets/inc/process.inc.php" method="post">
 <div>
 <input type="submit" value="Log Out" class="admin" />
 <input type="hidden" name="token"
 value="$_SESSION[token]" />
 <input type="hidden" name="action"
 value="user_logout" />
 </div>
 </form>
ADMIN_OPTIONS;
 }

Now save the changes and refresh http://localhost/ in your browser to see the new button (see

Figure 6-7).

Figure 6-7. The Log Out button as it appears after you modify the Calendar class

http://localhost

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

220

Creating a Method to Process the Logout
To process the logout, a new public method called processLogout() needs to be added to the Admin class.
This method does a quick check to make sure the proper action, user_logout, was supplied, and then
uses session_destroy() to remove the user data array by destroying the current session entirely.

You add this method to the Admin class by inserting the following bold code:

<?php

class Admin extends DB_Connect
{

 private $_saltLength = 7;

 public function __construct($db=NULL, $saltLength=NULL) {...}

 public function processLoginForm() {...}

 /**
 * Logs out the user
 *
 * @return mixed TRUE on success or messsage on failure
 */
 public function processLogout()
 {
 /*
 * Fails if the proper action was not submitted
 */
 if ($_POST['action']!='user_logout')
 {
 return "Invalid action supplied for processLogout.";
 }

 /*
 * Removes the user array from the current session
 */
 session_destroy();
 return TRUE;
 }

 private function _getSaltedHash($string, $salt=NULL) {...}

}

?>

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

221

Modifying the App to Handle the User Logout
The last step you need to take before users can successfully log out is to add another array element to the
$actions array in process.inc.php. Insert the following bold code into process.inc.php to complete the
logout process:

<?php

/*
 * Enable sessions
 */
session_start();

/*
 * Include necessary files
 */
include_once '../../../sys/config/db-cred.inc.php';

/*
 * Define constants for config info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a lookup array for form actions
 */
$actions = array(
 'event_edit' => array(
 'object' => 'Calendar',
 'method' => 'processForm',
 'header' => 'Location: ../../'
),
 'user_login' => array(
 'object' => 'Admin',
 'method' => 'processLoginForm',
 'header' => 'Location: ../../'
),
 'user_logout' => array(
 'object' => 'Admin',
 'method' => 'processLogout',
 'header' => 'Location: ../../'
)
);

/*
 * Make sure the anti-CSRF token was passed and that the
 * requested action exists in the lookup array
 */

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

222

if ($_POST['token']==$_SESSION['token']
 && isset($actions[$_POST['action']]))
{
 $use_array = $actions[$_POST['action']];
 $obj = new $use_array['object']($dbo);
 if (TRUE === $msg=$obj->$use_array['method']())
 {
 header($use_array['header']);
 exit;
 }
 else
 {
 // If an error occured, output it and end execution
 die ($msg);
 }
}
else
{
 // Redirect to the main index if the token/action is invalid
 header("Location: ../../");
 exit;
}

function __autoload($class_name)
{
 $filename = '../../../sys/class/class.'
 . strtolower($class_name) . '.inc.php';
 if (file_exists($filename))
 {
 include_once $filename;
 }
}

?>

Save this file, then navigate to http://localhost/, and click the Log Out button at the bottom of the

calendar. Clicking this button causes the message below the calendar to now read, “Logged Out!” (see
Figure 6-8).

http://localhost

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

223

Figure 6-8. Clicking the Log Out button removes the user data from the session

■ Note Now that you know the login is working, remove the Logged In!/Logged Out! message logic and the
paragraph tags that enclose it from index.php.

Displaying Admin Tools Only to Administrators
Your users can log in and log out; the last steps you need to take are to make sure that all actions and
options that require administrative access are only shown to users who are logged in.

Showing Admin Options to Administrators
The buttons for adding and editing events should not be displayed unless a user is logged in. To perform
this check, you need to modify both the _adminGeneralOptions() and _adminEntryOptions() methods in
the Calendar class.

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

224

Modifying the General Admin Options Method
Now let’s take a look at the calendar’s general options. If the user is logged in, you want to show her the
options to create a new entry and to log out.

However, if the user is logged out, she should see a link to log in. Perform this check by making the
modifications shown in bold to the _adminGeneralOptions() method in the Calendar class:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 public function displayForm() {...}

 public function processForm() {...}

 public function confirmDelete($id) {...}

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

 private function _adminGeneralOptions()
 {
 /*
 * If the user is logged in, display admin controls
 */
 if (isset($_SESSION['user']))
 {
 return <<<ADMIN_OPTIONS

 + Add a New Event
 <form action="assets/inc/process.inc.php" method="post">
 <div>
 <input type="submit" value="Log Out" class="admin" />

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

225

 <input type="hidden" name="token"
 value="$_SESSION[token]" />
 <input type="hidden" name="action"
 value="user_logout" />
 </div>
 </form>
ADMIN_OPTIONS;
 }
 else
 {
 return <<<ADMIN_OPTIONS

 Log In
ADMIN_OPTIONS;
 }
 }

 private function _adminEntryOptions($id) {...}

}

?>

After saving the changes, reload http://localhost/ while logged out to see the administrative

options replaced with a simple Log In link (see Figure 6-9).

http://localhost

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

226

Figure 6-9. While a user is logged out, only a Log In link is displayed

Modifying the Event Options Method
Next, you want add code to prevent the editing and deletion of events by unauthorized users; you do this
by modifying _adminEventOptions() in the Calendar class with the following bold code:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

227

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 public function displayForm() {...}

 public function processForm() {...}

 public function confirmDelete($id) {...}

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

 private function _adminGeneralOptions() {...}

 private function _adminEntryOptions($id)
 {
 if (isset($_SESSION['user']))
 {
 return <<<ADMIN_OPTIONS

 <div class="admin-options">
 <form action="admin.php" method="post">
 <p>
 <input type="submit" name="edit_event"
 value="Edit This Event" />
 <input type="hidden" name="event_id"
 value="$id" />
 </p>
 </form>
 <form action="confirmdelete.php" method="post">
 <p>
 <input type="submit" name="delete_event"
 value="Delete This Event" />
 <input type="hidden" name="event_id"
 value="$id" />
 </p>
 </form>
 </div><!-- end .admin-options -->
ADMIN_OPTIONS;
 }
 else
 {
 return NULL;

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

228

 }
 }

}

?>

After inserting these changes, navigate to http://localhost/ while logged out and click an event to

bring up its full view; the administrative options will not be displayed (see Figure 6-10).

Figure 6-10. The full event view while logged out

Limiting Access to Administrative Pages
As an additional security precaution, you should ensure that any pages that only authorized users should
have access to, such as the event creation/editing form, check for proper authorization before executing.

Disallowing Access to the Event Creation Form Without Login
You can prevent a mischievous user from finding the event creation form while logged out by
performing a simple check that you add to the file. If the user is not logged in, he’ll be sent to the main
calendar view before the script has the chance to execute.

To implement this change, open admin.php and insert the code shown in bold:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * If the user is not logged in, send them to the main file
 */

http://localhost

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

229

if (!isset($_SESSION['user']))
{
 header("Location: ./");
 exit;
}

/*
 * Output the header
 */
$page_title = "Add/Edit Event";
$css_files = array("style.css", "admin.css");
include_once 'assets/common/header.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo);

?>

<div id="content">
<?php echo $cal->displayForm(); ?>

</div><!-- end #content -->

<?php

/*
 * Output the footer
 */
include_once 'assets/common/footer.inc.php';

?>

After saving this file, attempt to navigate to http://localhost/admin.php while logged out. You’ll

automatically be sent to http://localhost/.

Ensuring Only Logged In Users Can Delete Events
Also, to keep unauthorized users from deleting events, insert a check for a valid user session in the
confirmdelete.php file:

<?php

/*
 * Enable sessions
 */
session_start();

/*

http://localhost/admin.php
http://localhost

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

230

 * Make sure an event ID was passed and the user is logged in
 */
if (isset($_POST['event_id']) && isset($_SESSION['user']))
{
 /*
 * Collect the event ID from the URL string
 */
 $id = (int) $_POST['event_id'];
}
else
{
 /*
 * Send the user to the main page if no ID is supplied
 * or the user is not logged in
 */
 header("Location: ./");
 exit;
}

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo);
$markup = $cal->confirmDelete($id);

/*
 * Output the header
 */
$page_title = "View Event";
$css_files = array("style.css", "admin.css");
include_once 'assets/common/header.inc.php';

?>

<div id="content">
<?php echo $markup; ?>

</div><!-- end #content -->

<?php

/*
 * Output the footer
 */

CHAPTER 6 ■ PASSWORD PROTECTION SENSITIVE ACTIONS AND AREAS

231

include_once 'assets/common/footer.inc.php';

?>

Now save this code and try to directly access http://localhost/confirmdelete.php while logged out.

As expected, you’ll be redirected to http://localhost/ instead.

Summary
In this chapter, you learned how to add user authorization to your calendar app, which means only
authorized users can now make modifications to the calendar. You learned how to create the Admin
class, check login credentials, display admin tools to admins only, and limit access to admin pages.
In the next chapter, you’ll start integrating jQuery into the application to progressively enhance the user
experience.

http://localhost/confirmdelete.php
http://localhost

P A R T 3
■ ■ ■

Combining jQuery with PHP
Applications

With the calendar running properly, you can now enhance the application with jQuery

to improve the user experience. In the following chapters, you’ll create a layer of

JavaScript that will sit on top of your app to add AJAX functionality.

C H A P T E R 7

■ ■ ■

235

Enhancing the User Interface
with jQuery

The application as it stands now is fully functional. Events can be viewed, and users with administrative
clearance can log in to create, edit, or delete events.

The next step is to add a layer of polish to the app that creates that finished look-and-feel, which
you’ll accomplish using a technique called progressive enhancement to add AJAX functionality to the
app.

Adding Progressive Enhancements with jQuery
Progressive enhancement is a term originally coined by Steven Champeon1 in 2003 to describe a web-
development technique in which applications are designed to be accessible to any Internet connection
and browser using semantic HTML and other technologies that are applied in layers (such as CSS files
and JavaScript markup).

For an application to follow the principles of progressive enhancement, it must adhere to the
following guidelines:

• Basic content is accessible to all browsers using the simplest, most semantic
HTML markup possible.

• All of the basic functionality of the app works in all browsers.

• The user’s preferences are respected; this means that the web app doesn’t
override browser settings (such as window size).

• Externally linked CSS handles the styling and presentation of the document.

• Externally linked JavaScript enhances the user experience, but it remains
unobtrusive, or non-essential to the application’s operation.

Your application already meets the first four guidelines (it’s not pretty, but the application will work
with styles disabled). So as long as your JavaScript doesn’t create any new functionality that can’t be
accessed with JavaScript disabled, you will have successfully created a progressively enhanced web
application.

1 http://www.hesketh.com/about-us/leadership-team/

http://www.hesketh.com/about-us/leadership-team

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

236

Setting Progressive Enhancement Goals
Using the principles of progressive enhancement, you’ll add the ability to view event information
without a page refresh in a modal window, a content area that sits on top of existing markup to display
additional information. Such windows are usually triggered by JavaScript, and they are used on many of
today’s most popular web sites.

In your calendar application, you’ll use a modal window to display event details after a user clicks
the event title. This will be done without a page refresh using AJAX.

Include jQuery in the Calendar App
As you learned in the introduction to jQuery earlier in this book, using jQuery syntax requires that you
first include the jQuery library. Because JavaScript files should be the last thing in your HTML markup
before you the close body tag (</body>), you’ll include the jQuery library and all subsequent files in
footer.inc.php (/public/assets/common/footer.inc.php). Begin by including the latest version of jQuery
in your app; you accomplish this by adding the following bold lines to footer.inc.php:

 <script type="text/javascript"
 src="http://www.google.com/jsapi"></script>
 <script type="text/javascript">
 google.load("jquery", "1");
 </script>
</body>

</html>

Save this code, then load http://localhost/ in your browser. Open the Firebug console and execute

the following command to ensure that jQuery is loaded in your app:

$("h2").text();

After running this command, the console will display the following output:

>>> $("h2").text();

"January 2010"

■ Note Because you’re using the Google JSAPI, you need to have an Internet connection available, in addition to
your Apache server. If you do not have access to an Internet connection or prefer not to use one, download the
latest version of jQuery from http://jquery.com/ and include it instead.

http://www.google.com/jsapi
http://localhost
http://jquery.com

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

237

Create a JavaScript Initialization File
Your app is following progressive enhancement guidelines, so all scripts will be housed in an external file
called init.js. It will reside in the public js folder (/public/assets/js/init.js), and it will contain all of
the custom jQuery code for your app.

Include the Initialization File in the Application
Before any of your scripts will be available to your app, you will need to include the initialization file in
the application. Your app will use jQuery syntax, so the initialization file needs to be included after the
script that loads the jQuery library in footer.inc.php.

You include the file in your app by inserting the following bold code into footer.inc.php:

 <script type="text/javascript"
 src="http://www.google.com/jsapi"></script>
 <script type="text/javascript">
 google.load("jquery", "1");
 </script>
 <script type="text/javascript"
 src="assets/js/init.js"></script>
</body>

</html>

Ensuring the Document Is Ready Before Script Execution
After creating init.js, use the document.ready shortcut from jQuery to ensure that no scripts execute
before the document is actually ready to be manipulated. Insert the following code into init.js:

// Makes sure the document is ready before executing scripts
jQuery(function($){

// A quick check to make sure the script loaded properly
console.log("init.js was loaded successfully.");

});

Save this file and load http://localhost/ in your browser with the Firebug console open. After the

file is loaded, you should see the following result appear in the console:

init.js was loaded successfully.

Creating a New Stylesheet for Elements Created by jQuery
To ensure the elements created with jQuery look right when you start building them, you’re going to
jump a bit ahead here and create a new CSS file to store styling information for the elements you’ll create
with the jQuery scripts you’re about to write.

http://www.google.com/jsapi
http://localhost

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

238

This file will be called ajax.css, and it will reside in the css folder (/public/assets/css/ajax.css).
After creating it, place the following style rules inside it:

.modal-overlay {
 position: fixed;
 top: 0;
 left: 0;
 bottom: 0;
 width: 100%;
 height: 100%;
 background-color: rgba(0,0,0,.5);
 z-index: 4;
}

.modal-window {
 position: absolute;
 top: 140px;
 left: 50%;
 width: 300px;
 height: auto;
 margin-left: -150px;
 padding: 20px;
 border: 2px solid #000;
 background-color: #FFF;
 -moz-border-radius: 6px;
 -webkit-border-radius: 6px;
 border-radius: 6px;
 -moz-box-shadow: 0 0 14px #123;
 -webkit-box-shadow: 0 0 14px #123;
 box-shadow: 0 0 14px #123;
 z-index: 5;
}

.modal-close-btn {
 position: absolute;
 top: 0;
 right: 4px;
 margin: 0;
 padding: 0;
 text-decoration: none;
 color: black;
 font-size: 16px;
}

.modal-close-btn:before {
 position: relative;
 top: -1px;
 content: "Close";
 text-transform: uppercase;
 font-size: 10px;
}

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

239

Including the Stylesheet in the Index File
Next, open index.php and include the new stylesheet in the $css_files array by adding the line in bold:

<?php

/*
 * Include necessary files
 */
include_once '../sys/core/init.inc.php';

/*
 * Load the calendar
 */
$cal = new Calendar($dbo, "2010-01-01 12:00:00");

/*
 * Set up the page title and CSS files
 */
$page_title = "Events Calendar";
$css_files = array('style.css', 'admin.css', 'ajax.css');

/*
 * Include the header
 */
include_once 'assets/common/header.inc.php';

?>

<div id="content">
<?php

/*
 * Display the calendar HTML
 */
echo $cal->buildCalendar();

?>

</div><!-- end #content -->

<?php

/*
 * Include the footer
 */
include_once 'assets/common/footer.inc.php';

?>

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

240

Creating a Modal Window for Event Data
The modal window you’ll create for this app will be fairly simple; the script to create it will follow these
steps:

1. Prevent the default action (opening the detailed event view in view.php).

2. Add an active class to the event link in the calendar.

3. Extract the query string from the event link’s href attribute.

4. Create a button that will close the modal window when clicked.

5. Create the modal window itself and put the Close button inside it.

6. Use AJAX to retrieve the information from the database and display it in the
modal window.

All of the preceding steps will be carried out when the click event is fired for an event title link.

Binding a Function to the Click Event of Title Links
Begin by adding a new selector to init.js that selects all anchor elements that are direct descendants of
list items (li>a) and use the .live() method to bind a handler to the click event. Insert the following
bold code into init.js:

// Makes sure the document is ready before executing scripts
jQuery(function($){

// Pulls up events in a modal window
$("li>a").live("click", function(event){

 // Event handler scripts go here

 });

});

Preventing the Default Action and Adding an Active Class
Next, you need to prevent the default action by using .preventDefault(), then add an active class to the
clicked element using .addClass().

This is accomplished by adding the following bold code:

// Makes sure the document is ready before executing scripts
jQuery(function($){

// Pulls up events in a modal window
$("li>a").live("click", function(event){

 // Stops the link from loading view.php

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

241

 event.preventDefault();

 // Adds an "active" class to the link
 $(this).addClass("active");

 // Proves the event handler worked by logging the link text
 console.log($(this).text());

 });

});

After saving this code, reload http://localhost/ in your browser and click any of the event titles.

Instead of going to the event details on view.php, the title of the event is output in the console. For
instance, if you click the New Year's Day event, you will see the following output in the console:

New Year's Day

Extracting the Query String with Regular Expressions
The modal window is being created to display event information, so you’ll need some way of knowing
which event should be displayed. Without adding any extra markup, you can actually pull the event ID
right out of the href attribute using regular expressions.

To do this, you need to extract the query string from the link. (If the href attribute value is
http://localhost/view.php?event_id=1, the query string is event_id=1.)

You will extract the query string using two items: .replace(), a native JavaScript function that
accepts a string or regular expression pattern to match; and a string or pattern that matches should be
replaced with.

Using the Lazy Approach: String-Based Replacement
At a glance, the obvious solution might seem to be the following:

var data = string.replace("http://localhost/view.php?", "");

And, yes, this does work, producing the output "event_id=1" (if you assume the original value of

$string was http://localhost/view.php?event_id=1). Unfortunately, this approach is not flexible
enough; for example, what if the application is moved to another domain name? Or, what if the file name
is changed to event.php? Either change breaks the preceding logic and requires an update to the script.

Adopting a Better Solution: Regular Expressions
However, there is a better solution: regular expressions. Regular expressions are a powerful pattern-
matching tool available in most modern programming languages.

To extract the query string, you’ll use a pattern that looks for the first question mark (?) in a string,
and then returns everything after it. This pattern will look like this:

http://localhost
http://localhost/view.php?event_id=1
http://localhost/view.php?
http://localhost/view.php?event_id=1

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

242

/.*?\?(.*)$/

Regular expressions in JavaScript are delimited by forward slashes (/) at each end of the expression.

Inside this expression, the pattern looks for zero or more of any character (from left to right) until the
first time it reaches a question mark; it then stores all characters after the question mark until the end of
the string as a named group for use in the replacement.

■ Note You’ll learn much more about regular expressions and how they work in Chapter 9.

Incorporating a Regular Expression into a Script
You want to extract the href value of the link that was clicked, so you’ll use the this keyword. In order to
use jQuery methods, you have to pass this as the selector to the jQuery function first. Now access the
href value with the .attr() method, then call .replace() and extract the query string.

When using regular expressions in .replace(), no quotes are used to enclose the pattern. Using the
regular expression just described, modify init.js to store the query string from the clicked link in a
variable called data; do this by adding the code shown in bold:

// Makes sure the document is ready before executing scripts
jQuery(function($){

// Pulls up events in a modal window
$("li>a").live("click", function(event){

 // Stops the link from loading view.php
 event.preventDefault();

 // Adds an "active" class to the link
 $(this).addClass("active");

 // Gets the query string from the link href
 var data = $(this)
 .attr("href")
 .replace(/.+?\?(.*)$/, "$1");

 // Logs the query string
 console.log(data);

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

243

 });

});

Save this code, then reload http://localhost/ and click a link. You should see something similar to

the following appear in the console:

event_id=1

Creating a Modal Window
The next step is to generate the HTML markup that will actually create the modal window and overlay.
This markup is extremely simple, and it will basically consist of a div element wrapped around other
content. For example, the New Year's Day event modal window markup will look like this:

<div class="modal-window">
 <h2>New Year's Day</h2>
 <p class="dates">January 01, 2010, 12:00am—11:59pm</p>
 <p>Happy New Year!</p>
</div>

You are going to use this same modal window for other features as well (such as for displaying the

editing form for events), so the actual creation of the modal window is going to be abstracted in a
separate function for easy re-use. Because you will re-use more than one function, you’ll organize your
script by placing all utility functions in an object literal, which is a comma-separated list of name-value
pairs (for more information, see the sidebar, “Using an Object Literal for Utility Functions”).

Creating the Utility Function to Check for a Modal Window
At the top of init.js, declare a new object literal called fx to store your utility functions:

// Makes sure the document is ready before executing scripts
jQuery(function($){

// Functions to manipulate the modal window
var fx = {};

// Pulls up events in a modal window
$("li>a").live("click", function(event){

 // Stops the link from loading view.php
 event.preventDefault();

 // Adds an "active" class to the link
 $(this).addClass("active");

 // Gets the query string from the link href

http://localhost

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

244

 var data = $(this)
 .attr("href")
 .replace(/.+?\?(.*)$/, "$1");

 // Logs the query string
 console.log(data);

 });

});

The first function to be stored in fx will be called initModal, and it will check whether a modal

window already exists. If it does, the function will select it; otherwise, it will create a new one and
append it to the body tag.

To see if an element already exists, use the length property after executing the jQuery function with
a selector for that element. If the length property returns 0, the element does not currently exist in the
document object model (DOM).

Perform the check and return a modal window by inserting the following bold code into fx inside
init.js:

// Functions to manipulate the modal window
var fx = {

 // Checks for a modal window and returns it, or
 // else creates a new one and returns that
 "initModal" : function() {
 // If no elements are matched, the length
 // property will return 0
 if ($(".modal-window").length==0)
 {
 // Creates a div, adds a class, and
 // appends it to the body tag
 return $("<div>")
 .addClass("modal-window")
 .appendTo("body");
 }
 else
 {
 // Returns the modal window if one
 // already exists in the DOM
 return $(".modal-window");
 }
 }

 };

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

245

Calling the Utility Function from the Event Handler
Next, modify the click event handler to load the result of fx.initModal into a variable for use in the
script by adding the following bold code in init.js:

// Pulls up events in a modal window
$("li>a").live("click", function(event){

 // Stops the link from loading view.php
 event.preventDefault();

 // Adds an "active" class to the link
 $(this).addClass("active");

 // Gets the query string from the link href
 var data = $(this)
 .attr("href")
 .replace(/.+?\?(.*)$/, "$1"),

 // Checks if the modal window exists and
 // selects it, or creates a new one
 modal = fx.initModal();

 });

■ Note The semicolon after the data variable has been replaced with a comma in this example.

Save, then reload http://localhost/ and click one of the event titles to cause a modal window to
appear on the screen (see Figure 7-1).

http://localhost

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

246

Figure 7-1. Clicking an event title causes a modal window to appear

USING AN OBJECT LITERAL FOR UTILITY FUNCTIONS

Utility functions often come into play when writing applications. The more complex the app, the more likely
it is that a large number of utility functions will exist for it, and the harder it is to keep those functions
organized.

One option for keeping utility functions organized is to use object literals. This allows developers to put the
functions in one place or even to group functions according to their usage.

Understanding Object Literals

At its simplest, an object literal is a variable in JavaScript that is an empty set of curly braces, signifying an
empty object literal:

var obj = {};

You can add any number of values to the object literal using comma-separated name-value pairs:

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

247

var obj = {
 "name" : "Jason Lengstorf",
 "age" : "25"
};

To access a value, simply append a dot (.) and the name of the property you wish to access:

alert(obj.name); // alerts "Jason Lengstorf"

What makes object literals so useful is that you can also store functions in them:

var obj = {
 "func" : function() { alert("Object literals rule!"); }
};

To call a function stored in an object literal, use the same syntax that you would to access a value;
however, you must also include the parentheses at the end. Otherwise, JavaScript assumes you’re trying
to store that function in another variable and simply returns it:

obj.func(); // alerts "Object literals rule!"

Functions in object literals can accept parameters, as well:

var obj = {
 "func" : function(text){ alert(text); }
};
obj.func("I'm a parameter!"); // alerts "I'm a parameter!"

Object Literals vs. Procedural Programming

Keeping functions organized in an object literal makes code more legible and—if the developer makes an
effort to keep the functions abstract enough—can cut down on the time spent maintaining the code in the
future because everything is compartmentalized and easy to find.

That said, object literals are not always the best solution. In instances where you may be dealing with
multiple objects, it can be better to use a full-on object-oriented approach. If hardly any scripting is
required, an object literal may be overkill.

At the end of the day, it’s up to you as a developer to decide what the best approach is for your project.
Ultimately, it’s a matter of taste and comfort; you need to decide what makes your development process
easiest.

Retrieve and Display Event Information with AJAX
Now that the modal window loads, it’s time to load the event information and display it. To do this,
you’ll be using the $.ajax() method.

Using the $.ajax() method, you will send data to a processing file (which you'll build in the next
section) using the POST method, then insert the response into the modal window.

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

248

Creating a File to Handle AJAX Requests
Before you put together the call to $.ajax(), it helps to know where and how the data should be sent. In
the inc folder, create a new file called ajax.inc.php (/public/assets/inc/ajax.inc.php). This file will
work very similarly to process.inc.php, except it will deal exclusively with AJAX calls. Because a value
returned from a PHP function can’t be read by JavaScript unless the value is actually output (using echo
or its ilk), process.inc.php will not function properly for this aspect of the application.

Essentially, ajax.inc.php will use a lookup array to determine which objects and methods need to
be used, then output the returned values using echo for use with AJAX.

Start by enabling sessions, loading the necessary configuration information, defining a constant,
and putting together an auto-load function. Now add the following to ajax.inc.php:

<?php

/*
 * Enable sessions
 */
session_start();

/*
 * Include necessary files
 */
include_once '../../../sys/config/db-cred.inc.php';

/*
 * Define constants for config info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

function __autoload($class_name)
{
 $filename = '../../../sys/class/class.'
 . strtolower($class_name) . '.inc.php';
 if (file_exists($filename))
 {
 include_once $filename;
 }
}

?>

Next, define the lookup array with information for loading event data, then put together the code

that will instantiate an object, call the method, and output the returned value using the bold code that
follows:

<?php

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

249

/*
 * Enable sessions
 */
session_start();

/*
 * Include necessary files
 */
include_once '../../../sys/config/db-cred.inc.php';

/*
 * Define constants for config info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a lookup array for form actions
 */
$actions = array(
 'event_view' => array(
 'object' => 'Calendar',
 'method' => 'displayEvent'
)
);

/*
 * Make sure the anti-CSRF token was passed and that the
 * requested action exists in the lookup array
 */
if (isset($actions[$_POST['action']]))
{
 $use_array = $actions[$_POST['action']];
 $obj = new $use_array['object']($dbo);

 /*
 * Check for an ID and sanitize it if found
 */
 if (isset($_POST['event_id']))
 {
 $id = (int) $_POST['event_id'];
 }
 else { $id = NULL; }

 echo $obj->$use_array['method']($id);
}

function __autoload($class_name)
{

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

250

 $filename = '../../../sys/class/class.'
 . strtolower($class_name) . '.inc.php';
 if (file_exists($filename))
 {
 include_once $filename;
 }
}

?>

The only real differences from process.inc.php in the preceding code are the lack of a header key in

the lookup array and the use of echo to output the return value of called methods.

Loading Event Data Using AJAX
Moving back to init.js, you can now add the call to $.ajax(). There will eventually be several calls to
$.ajax() in your application, so store the location of the processing file in a variable for easy
maintenance if the file location or name could ever change. Add this variable to the top of init.js by
inserting the code shown in bold:

// Makes sure the document is ready before executing scripts
jQuery(function($){

// File to which AJAX requests should be sent
var processFile = "assets/inc/ajax.inc.php",

// Functions to manipulate the modal window
 fx = {

 // Checks for a modal window and returns it, or
 // else creates a new one and returns that
 "initModal" : function() {
 // If no elements are matched, the length
 // property will be 0
 if ($(".modal-window").length==0)
 {
 // Creates a div, adds a class, and
 // appends it to the body tag
 return $("<div>")
 .addClass("modal-window")
 .appendTo("body");
 }
 else
 {
 // Returns the modal window if one
 // already exists in the DOM
 return $(".modal-window");
 }
 }

 };

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

251

// Pulls up events in a modal window
$("li>a").live("click", function(event){

 // Stops the link from loading view.php
 event.preventDefault();

 // Adds an "active" class to the link
 $(this).addClass("active");

 // Gets the query string from the link href
 var data = $(this)
 .attr("href")
 .replace(/.+?\?(.*)$/, "$1"),

 // Checks if the modal window exists and
 // selects it, or creates a new one
 modal = fx.initModal();

 });

});

Next, set up the call to $.ajax() in the event handler. It will use the POST method, point to the

processFile, and send the appropriate data. Because the query string extracted from the link does not
include an action field, insert one manually here. Finally, use .append() to insert the returned markup
into the modal window if the call succeeds or to display an error message if it fails.

Do this by inserting the following bold lines into init.js:

// Pulls up events in a modal window
$("li>a").live("click", function(event){

 // Stops the link from loading view.php
 event.preventDefault();

 // Adds an "active" class to the link
 $(this).addClass("active");

 // Gets the query string from the link href
 var data = $(this)
 .attr("href")
 .replace(/.+?\?(.*)$/, "$1"),

 // Checks if the modal window exists and
 // selects it, or creates a new one
 modal = fx.initModal();

 // Loads the event data from the DB
 $.ajax({
 type: "POST",
 url: processFile,

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

252

 data: "action=event_view&" + data,
 success: function(data){
 // Alert event data for now
 modal.append(data);
 },
 error: function(msg) {
 modal.append(msg);
 }
 });

 });

Save your changes, then reload http://localhost/ and click an event title to see the event

information loaded into the modal window (see Figure 7-2).

Figure 7-2. The event information loaded into the modal window

http://localhost

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

253

Add a Close Button
As it stands right now, the only way to get rid of the modal window after clicking an event title is to
reload the page. Of course, this isn’t good enough, so you need to add a Close button.

To accomplish this, you need to create a new link and bind a click event handler to it that removes
the modal window from the DOM. To give it a traditional Close button feel, use the multiplication
symbol as its content (and the CSS in ajax.css adds the word "close" in front of it). Also, add an href
attribute to make sure hovering over the link causes the mouse to behave as though the button is
clickable.

Next, add a Close button by inserting the following bold code into init.js:

// Pulls up events in a modal window
$("li>a").live("click", function(event){

 // Stops the link from loading view.php
 event.preventDefault();

 // Adds an "active" class to the link
 $(this).addClass("active");

 // Gets the query string from the link href
 var data = $(this)
 .attr("href")
 .replace(/.+?\?(.*)$/, "$1"),

 // Checks if the modal window exists and
 // selects it, or creates a new one
 modal = fx.initModal();

 // Creates a button to close the window
 $("<a>")
 .attr("href", "#")
 .addClass("modal-close-btn")
 .html("×")
 .click(function(event){
 // Prevent the default action
 event.preventDefault();

 // Removes modal window
 $(".modal-window")
 .remove();
 })
 .appendTo(modal);

 // Loads the event data from the DB
 $.ajax({
 type: "POST",
 url: processFile,
 data: "action=event_view&" + data,
 success: function(data){
 // Alert event data for now

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

254

 modal.append(data);
 },
 error: function(msg) {
 modal.append(msg);
 }
 });

 });

After saving the preceding code, load http://localhost/ and click an event title to see the new Close

button (see Figure 7-3). Click the Close button to remove the modal window.

Figure 7-3. The Close button is now visible in the modal window

Add Effects to the Creation and Destruction of the Modal Window
To give the modal window a little more style and polish, you’ll add effects to make the box fade in when
it’s created and fade out when it’s removed. Also, to help draw focus to the modal window when it’s
active, you’ll add an overlay to the site that will darken everything but the modal window.

http://localhost

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

255

Fade Out the Modal Window
First, you need to add effects to fade out the modal window. This function will be triggered in several
ways, some of which also trigger events; to handle this, you create a conditional statement that checks
whether an event was triggered, then prevent the default action if that’s the case.

Next, remove the class active from all links, since none of them are in use when the modal window
isn’t visible.

Finally, you select and fade out the modal window using .fadeOut(). In the callback function of
.fadeOut(), the modal window will be removed from the DOM entirely.

You add this function by inserting the following bold code in the fx object literal:

// Functions to manipulate the modal window
 fx = {

 // Checks for a modal window and returns it, or
 // else creates a new one and returns that
 "initModal" : function() {
 // If no elements are matched, the length
 // property will be 0
 if ($(".modal-window").length==0)
 {
 // Creates a div, adds a class, and
 // appends it to the body tag
 return $("<div>")
 .addClass("modal-window")
 .appendTo("body");
 }
 else
 {
 // Returns the modal window if one
 // already exists in the DOM
 return $(".modal-window");
 }
 },

 // Fades out the window and removes it from the DOM
 "boxout" : function(event) {
 // If an event was triggered by the element
 // that called this function, prevents the
 // default action from firing
 if (event!=undefined)
 {
 event.preventDefault();
 }

 // Removes the active class from all links
 $("a").removeClass("active");

 // Fades out the modal window, then removes
 // it from the DOM entirely
 $(".modal-window")

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

256

 .fadeOut("slow", function() {
 $(this).remove();
 }
);
 }

 };

To incorporate this new function into the script, modify the click event handler for the Close button

using the following bold code:

 // Creates a button to close the window
 $("<a>")
 .attr("href", "#")
 .addClass("modal-close-btn")
 .html("×")
 .click(function(event){
 // Removes modal window
 fx.boxout(event);
 })
 .appendTo(modal);

Save init.js and reload http://localhost/ in your browser. Click an event title to create a new

modal window, then click the Close button to watch the modal window fade out (see Figure 7-4).

http://localhost

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

257

Figure 7-4. The modal window mid-fade after the user clicks the Close button

Adding an Overlay and Fade in the Modal Window
To add the overlay and fade in the modal window, you need to add another function to the fx object
literal. It will be called boxin, and it will be called in the success callback of $.ajax() in the event title
click handler. This function will accept two parameters: the data returned by ajax.inc.php (data) and
the modal window object (modal).

First, the function will create a new div with a class of modal-overlay; next, it will hide the div and
append it to the body element. To help usability, the overlay will also have a click handler attached to it
that will remove the modal window when clicked by invoking fx.boxout().

Next, the function will hide the modal window and append the information stored in data to it.
Finally, it will fade in both elements using .fadeIn().

You add this function to the fx object literal by inserting the code shown in bold:

// Functions to manipulate the modal window
 fx = {

 // Checks for a modal window and returns it, or
 // else creates a new one and returns that

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

258

 "initModal" : function() {
 // If no elements are matched, the length
 // property will be 0
 if ($(".modal-window").length==0)
 {
 // Creates a div, adds a class, and
 // appends it to the body tag
 return $("<div>")
 .addClass("modal-window")
 .appendTo("body");
 }
 else
 {
 // Returns the modal window if one
 // already exists in the DOM
 return $(".modal-window");
 }
 },

 // Adds the window to the markup and fades it in
 "boxin" : function(data, modal) {
 // Creates an overlay for the site, adds
 // a class and a click event handler, then
 // appends it to the body element
 $("<div>")
 .hide()
 .addClass("modal-overlay")
 .click(function(event){
 // Removes event
 fx.boxout(event);
 })
 .appendTo("body");

 // Loads data into the modal window and
 // appends it to the body element
 modal
 .hide()
 .append(data)
 .appendTo("body");

 // Fades in the modal window and overlay
 $(".modal-window,.modal-overlay")
 .fadeIn("slow");
 },

 // Fades out the window and removes it from the DOM
 "boxout" : function(event) {
 // If an event was triggered by the element
 // that called this function, prevents the
 // default action from firing
 if (event!=undefined)

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

259

 {
 event.preventDefault();
 }

 // Removes the active class from all links
 $("a").removeClass("active");

 // Fades out the modal window, then removes
 // it from the DOM entirely
 $(".modal-window")
 .fadeOut("slow", function() {
 $(this).remove();
 }
);
 }

 };

Next, you need to modify the callback function that fires on a successful execution of $.ajax() when

clicking an event title to call fx.boxin; you do so by adding the line of bold code in the listing that
follows:

// Pulls up events in a modal window
$("li>a").live("click", function(event){

 // Stops the link from loading view.php
 event.preventDefault();

 // Adds an "active" class to the link
 $(this).addClass("active");

 // Gets the query string from the link href
 var data = $(this)
 .attr("href")
 .replace(/.+?\?(.*)$/, "$1"),

 // Checks if the modal window exists and
 // selects it, or creates a new one
 modal = fx.initModal();

 // Creates a button to close the window
 $("<a>")
 .attr("href", "#")
 .addClass("modal-close-btn")
 .html("×")
 .click(function(event){
 // Removes modal window
 fx.boxout(event);
 })
 .appendTo(modal);

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

260

 // Loads the event data from the DB
 $.ajax({
 type: "POST",
 url: processFile,
 data: "action=event_view&" + data,
 success: function(data){
 fx.boxin(data, modal);
 },
 error: function(msg) {
 modal.append(msg);
 }
 });

 });

Save this code, reload http://localhost/, and click an event title to see the modal overlay and

modal window fade in (see Figure 7-5).

Figure 7-5. The modal window with an overlay to help draw the focus

http://localhost

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

261

You may have noticed that the modal window appears to flicker right as it’s opened. This happens
because fx.initModal() appends the modal window to the body element without hiding it. To correct
this, add a call to .hide() in fx.initModal() using the following bold code:

// Functions to manipulate the modal window
 fx = {

 // Checks for a modal window and returns it, or
 // else creates a new one and returns that
 "initModal" : function() {
 // If no elements are matched, the length
 // property will be 0
 if ($(".modal-window").length==0)
 {
 // Creates a div, adds a class, and
 // appends it to the body tag
 return $("<div>")
 .hide()
 .addClass("modal-window")
 .appendTo("body");
 }
 else
 {
 // Returns the modal window if one
 // already exists in the DOM
 return $(".modal-window");
 }
 },

 // Adds the window to the markup and fades it in
 "boxin" : function(data, modal) {
 // Code omitted for brevity
 },

 // Fades out the window and removes it from the DOM
 "boxout" : function(event) {
 // Code omitted for brevity
 }

 };

Finally, clicking the Close button does not remove the overlay. To fade out and remove the overlay,

simply modify the selector in fx.boxout() to include the class modal-overlay:

// Functions to manipulate the modal window
 fx = {

 // Checks for a modal window and returns it, or
 // else creates a new one and returns that
 "initModal" : function() {
 // Code omitted for brevity

CHAPTER 7 ■ ENHANCING THE USER INTERFACE WITH JQUERY

262

 },

 // Adds the window to the markup and fades it in
 "boxin" : function(data, modal) {
 // Code omitted for brevity
 },

 // Fades out the window and removes it from the DOM
 "boxout" : function(event) {
 // If an event was triggered by the element
 // that called this function, prevents the
 // default action from firing
 if (event!=undefined)
 {
 event.preventDefault();
 }

 // Removes the active class from all links
 $("a").removeClass("active");

 // Fades out the modal window and overlay,
 // then removes both from the DOM entirely
 $(".modal-window,.modal-overlay")
 .fadeOut("slow", function() {
 $(this).remove();
 }
);
 }

 };

After making this change, reload http://localhost/ and click an event title. The modal window and

overlay will fade in, and clicking either the Close button or the overlay will cause the modal window and
overlay to fade out.

Summary
In this chapter, you learned how to load event data dynamically with jQuery using the progressive
enhancement technique. You also learned about event handling, basic effects, and even a little bit about
regular expressions.

In the next chapter, you’ll continue to add AJAX functionality by making the editing controls work
via AJAX, as well.

http://localhost

C H A P T E R 8

■ ■ ■

263

Editing the Calendar
with AJAX and jQuery

Now that your app can display event data without a page refresh, you can see the added convenience
provided by AJAX in web applications. Historically, one of the biggest pitfalls of using web apps has been
the fact that each action, no matter how small, usually required waiting for the page to refresh while the
setting was saved. Web apps were convenient when a user needed access to his information on a shared
computer, but the slow workflow was usually enough to make users lean toward desktop applications
whenever possible.

However, with mainstream acceptance and use of AJAX, users can now make changes rapidly
without constantly waiting for a page to reload. This makes web apps feel more like desktop apps, which
also makes them much more appealing to users.

In this chapter, you’ll learn to add scripts that make the editing controls for administrators function
smoothly without requiring a page refresh for each action. The only action that will require a page
refresh is the login, since that requires changes to the session.

■ Note Before starting the exercises in this chapter, please log in to the calendar application. The default login
relies on a username of testuser and a password of admin.

Opening the Event Creation Form
To start, you’ll modify the script to let administrators add new events without a page refresh. Open
init.js and select the button to add new events by its class (admin). Add a click event handler that
prevents the default action and (for now) logs a message to confirm it fired properly:

jQuery(function($){

var processFile = "assets/inc/ajax.inc.php",
 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...}
 }

$("li>a").live("click", function(event){...});

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

264

// Displays the edit form as a modal window
$(".admin").live("click", function(event){

 // Prevents the form from submitting
 event.preventDefault();

 // Logs a message to prove the handler was triggered
 console.log("Add a New Event button clicked!");

 });

});

■ Note For the sake of brevity, all unchanged functions have been abbreviated, and comments have been omitted
from code samples in this chapter. You can find the code at the book’s Apress page:
http://apress.com/book/view/1430228474.

Save this code and refresh http://localhost/. Click the Add a New Event button, and you’ll see the
following result logged to the console:

Add a New Event button clicked!

Adding an AJAX Call to Load the Form
Next, create a variable to store an action that will be sent to the processing file. You’re loading the editing
and creation form, so set the action to event_edit.

Now you can call the $.ajax() function. This function will be similar to the script for loading event
data into the modal window; in fact, the only difference will be in the data submitted and the way the
return value is handled.

On a successful load, you hide the form and store a reference to it in the variable form. Next, you
check for a modal window using fx.initModal() and fade it in using fx.boxin() with a null first
argument. Finally, you append the form to the modal window, fade it in, and assign to it the class edit-
form for easy selection later.

Add the following bold code to init.js to carry out these steps:

jQuery(function($){

var processFile = "assets/inc/ajax.inc.php",
 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...}
 }

http://apress.com/book/view/1430228474
http://localhost

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

265

$("li>a").live("click", function(event){...});

// Displays the edit form as a modal window
$(".admin").live("click", function(event){

 // Prevents the form from submitting
 event.preventDefault();

 // Loads the action for the processing file
 var action = "edit_event";

 // Loads the editing form and displays it
 $.ajax({
 type: "POST",
 url: processFile,
 data: "action="+action,
 success: function(data){
 // Hides the form
 var form = $(data).hide(),

 // Make sure the modal window exists
 modal = fx.initModal();

 // Call the boxin function to create
 // the modal overlay and fade it in
 fx.boxin(null, modal);

 // Load the form into the window,
 // fades in the content, and adds
 // a class to the form
 form
 .appendTo(modal)
 .addClass("edit-form")
 .fadeIn("slow");
 },
 error: function(msg){
 alert(msg);
 }
 });

 });

});

Modifying the AJAX Processing File to Load the Form
Before the preceding AJAX call will work, you need to modify the ajax.inc.php lookup array. Add a new
array element that tells the script to create a new Calendar object, and then call the displayForm()
method with the code shown in bold:

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

266

<?php

/*
 * Enable sessions
 */
session_start();

/*
 * Include necessary files
 */
include_once '../../../sys/config/db-cred.inc.php';

/*
 * Define constants for config info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a lookup array for form actions
 */
$actions = array(
 'event_view' => array(
 'object' => 'Calendar',
 'method' => 'displayEvent'
),
 'edit_event' => array(
 'object' => 'Calendar',
 'method' => 'displayForm'
)
);

/*
 * Make sure the anti-CSRF token was passed and that the
 * requested action exists in the lookup array
 */
if (isset($actions[$_POST['action']]))
{
 $use_array = $actions[$_POST['action']];
 $obj = new $use_array['object']($dbo);

 /*
 * Check for an ID and sanitize it if found
 */
 if (isset($_POST['event_id']))
 {
 $id = (int) $_POST['event_id'];
 }

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

267

 else { $id = NULL; }

 echo $obj->$use_array['method']($id);
}

function __autoload($class_name)
{
 $filename = '../../../sys/class/class.'
 . strtolower($class_name) . '.inc.php';
 if (file_exists($filename))
 {
 include_once $filename;
 }
}

?>

Now save the file, load http://localhost/, and click the Add a New Event button. A new modal

window will fade in with the edit form inside (see Figure 8-1).

http://localhost

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

268

Figure 8-1. The event creation form loaded in a modal window

Making the Cancel Button Behave Like the Close Button
You may have noticed that the modal window doesn’t contain a Close button when the form is
displayed. However, the modal window does include a Cancel button that will refresh the page when
clicked. Instead of adding more buttons to the window, you’re simply going to make the Cancel button
call the fx.boxout() method to close the window.

To accomplish this, use .live() to bind a click event handler to any link containing the word cancel
inside a form with the edit-form class:

jQuery(function($){

var processFile = "assets/inc/ajax.inc.php",
 fx = {
 "initModal" : function() {...},

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

269

 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...}
 }

$("li>a").live("click", function(event){...});

$(".admin").live("click", function(event){...});

// Make the cancel button on editing forms behave like the
// close button and fade out modal windows and overlays
$(".edit-form a:contains(cancel)").live("click", function(event){
 fx.boxout(event);
 });

});

Save the file, reload http://localhost/, and click the Add a New Event button. After the modal

window has loaded, click the Cancel link in the form. The modal window and overlay will fade out, just
as they do when the Close button is clicked.

Saving New Events in the Database
To make the form work properly, you must now add a click event handler to the Submit button on the
form. This handler will prevent the default form submission, then use .serialize() to create a query
string from the form inputs. It then uses the serialized data to submit the form via POST to ajax.inc.php.

Start by adding a new click handler to any inputs of type submit that exist in a form with the edit-
form class. Using .live() ensures that dynamically created inputs will still be targeted by the handler.
You can prevent the default action using event.preventDefault().

Do this by inserting the bold code into init.js:

jQuery(function($){

var processFile = "assets/inc/ajax.inc.php",
 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...}
 }

$("li>a").live("click", function(event){...});

$(".admin").live("click", function(event){...});

// Edits events without reloading
$(".edit-form input[type=submit]").live("click", function(event){

 // Prevents the default form action from executing
 event.preventDefault();

 // Logs a message to indicate the script is working

http://localhost

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

270

 console.log("Form submission triggered!");

 });

$(".edit-form a:contains(cancel)")
 .live("click", function(event){...});

});

Next, save and reload the calendar in your browser. Click the Add a New Event button to bring up

the modal window, and then click the Create a New Event button to submit the form. This outputs the
following result to the console:

Form submission triggered!

Serializing the Form Data
To send the event data to the processing file, you need to convert the data to a query string. Fortunately,
jQuery has a built-in method to do this called .serialize(). It will convert form inputs into a string of
name-value pairs, separated by an ampersand (&).

Modify init.js to serialize the form data by selecting the parent form of the clicked input, and then
serialize its data. Next, log the output to the console for now:

// Edits events without reloading
$(".edit-form input[type=submit]").live("click", function(event){

 // Prevents the default form action from executing
 event.preventDefault();

 // Serializes the form data for use with $.ajax()
 var formData = $(this).parents("form").serialize();

 // Logs a message to indicate the script is working
 console.log(formData);

 });

Save the preceding code and bring up the event creation form in your browser. Now enter the

following test data:

• Event Title: Test Event

• Event Start: 2010-01-04 08:00:00

• Event End: 2010-01-04 10:00:00

• Event Description: This is a test description.

Click the Create a New Event button to submit the form and output the following to your console
(the token value will vary):

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

271

event_title=Test+Event&event_start=2010-01-04+08%3A00%3A00&event_end=2010-01-04+10%3A00 
%3A00&event_description=This+is+a+test+description.&event_id=&token=a52412c2e7bfb993844 
0dc9d4e0867370e350134&action=event_edit

Submitting the Serialized Form Data to the Processing File
Now that the form data is serialized, you’re ready use $.ajax() to send the data to the processing file.

Use the POST method to submit the serialized data to ajax.inc.php, and then fade out the modal
window and overlay using fx.boxout() on a successful submission. Also, log a confirmation message in
the Firebug console and append the following bold code to init.js:

// Edits events without reloading
$(".edit-form input[type=submit]").live("click", function(event){

 // Prevents the default form action from executing
 event.preventDefault();

 // Serializes the form data for use with $.ajax()
 var formData = $(this).parents("form").serialize();

 // Sends the data to the processing file
 $.ajax({
 type: "POST",
 url: processFile,
 data: formData,
 success: function(data) {
 // Fades out the modal window
 fx.boxout();

 // Logs a message to the console
 console.log("Event saved!");
 },
 error: function(msg) {
 alert(msg);
 }
 });

 });

At this point, the script is ready to save new events. First, however, you need to modify ajax.inc.php

to accept this data.

Modifying the AJAX Processing File to Handle New Submissions
Getting ajax.inc.php ready to accept submissions from the event editing form is as easy as adding a new
element to the lookup array:

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

272

<?php

/*
 * Enable sessions
 */
session_start();

/*
 * Include necessary files
 */
include_once '../../../sys/config/db-cred.inc.php';

/*
 * Define constants for config info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a lookup array for form actions
 */
$actions = array(
 'event_view' => array(
 'object' => 'Calendar',
 'method' => 'displayEvent'
),
 'edit_event' => array(
 'object' => 'Calendar',
 'method' => 'displayForm'
),
 'event_edit' => array(
 'object' => 'Calendar',
 'method' => 'processForm'
)
);

/*
 * Make sure the anti-CSRF token was passed and that the
 * requested action exists in the lookup array
 */
if (isset($actions[$_POST['action']]))
{
 $use_array = $actions[$_POST['action']];
 $obj = new $use_array['object']($dbo);

 /*
 * Check for an ID and sanitize it if found
 */
 if (isset($_POST['event_id']))

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

273

 {
 $id = (int) $_POST['event_id'];
 }
 else { $id = NULL; }

 echo $obj->$use_array['method']($id);
}

function __autoload($class_name)
{
 $filename = '../../../sys/class/class.'
 . strtolower($class_name) . '.inc.php';
 if (file_exists($filename))
 {
 include_once $filename;
 }
}

?>

Save this file and reload http://localhost/. Next, click the Add a New Event button to bring up the

form in a modal window, and then enter a new event with the following information:

• Event Title: Test Event

• Event Start: 2010-01-04 08:00:00

• Event End: 2010-01-04 10:00:00

• Event Description: This is a test description.

Now click the Create a New Event button; the modal window will fade out, and the following
message will be logged into the console:

Event saved!

Note that the new event does not appear in the calendar unless the page is refreshed. This may
confuse users, so in the next section you’ll modify the app to add newly created events into the calendar
after a successful save.

Adding Events Without Refreshing
Adding the new events to the calendar is fairly involved; after the event is saved, you need to take the
following steps:

1. Deserialize the form data.

2. Create date objects for both the currently displayed month and the new event.

3. Make sure the month and year match up for the new event.

http://localhost

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

274

4. Get the new event’s ID.

5. Determine on what day of the month the event falls.

6. Generate a new link with the proper event data and insert it into the
corresponding calendar day.

This functionality will be enclosed in a new addition to the fx object literal called addevent, which
will accept the returned data from ajax.inc.php (data), as well as the serialized form data (formData).

To begin, modify the fx object literal in init.js by inserting the following bold code:

jQuery(function($){

var processFile = "assets/inc/ajax.inc.php",
 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){
 // Code to add the event goes here
 }
 };

$("li>a").live("click", function(event){...});

$(".admin").live("click", function(event){...});

$(".edit-form input[type=submit]")
 .live("click", function(event){...});

$(".edit-form a:contains(cancel)")
 .live("click", function(event){...});

});

Deserializing the Form Data
The first step when adding a new event is to deserialize the form data. Because this action can stand
alone, you’ll handle this step by creating an additional function in the fx object literal called deserialize
that accepts a string (str):

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){
 // Code to add the event goes here

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

275

 },

 // Deserializes the query string and returns
 // an event object
 "deserialize" : function(str){
 // Deserialize data here
 }
 };

As you learned earlier in this book, a serialized string is a series of name-value pairs connected by an

equals sign (=) and separated by ampersands (&). An example of two serialized name-value pairs might
look like this:

name1=value1&name2=value2

To deserialize these values, start by splitting the string at each ampersand using the native

JavaScript function, .split(). This function breaks the string into an array of name-value pairs:

Array
(
 0 => "name1=value1",
 1 => "name2=value2"
)

Next, you need to loop through the array of name-value pairs. Inside this loop, split the pairs at the

equals sign and store the array in a variable called pairs. This means each name-value pair is split into
an array, with the first index containing the name and the second index containing the value. The array
follows this format:

Array
(
 0 => "name1",
 1 => "value1"
)

Store these values in variables called key and val, respectively, and then store them in a new object

called entry as properties.
When the loop is completed, return the deserialized data object.
Next, add the following bold code inside fx.deserialize:

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){
 // Code to add the event goes here
 },

 // Deserializes the query string and returns

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

276

 // an event object
 "deserialize" : function(str){
 // Breaks apart each name-value pair
 var data = str.split("&"),

 // Declares variables for use in the loop
 pairs=[], entry={}, key, val;

 // Loops through each name-value pair
 for (x in data)
 {
 // Splits each pair into an array
 pairs = data[x].split("=");

 // The first element is the name
 key = pairs[0];

 // Second element is the value
 val = pairs[1];

 // Stores each value as an object property
 entry[key] = val;
 }
 return entry;
 }
 };

Decode Any URL-Encoded Characters in Form Values
Before fx.deserialize is officially ready for use, you must first modify it to decode any URL-encoded
entities. When data is serialized, string values are encoded so that they can be passed in the query string.
This means that the string “I'm testing & logging!” will be converted to the following when it is serialized:

I'm+testing+%26+logging!

To reverse this, replace all plus signs (+) with spaces using the regular expression /\+/g; this
expression matches only plus signs. The g following the expression’s closing delimiter makes the regular
expression search globally, so more than one match will be replaced.

Next, you need to use the native, stand-alone JavaScript function, decodeURIComponent(). You will
create a new function in fx called urldecode and insert the following code:

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

277

 // Code to add the event goes here
 },

 // Deserializes the query string and returns
 // an event object
 "deserialize" : function(str){
 // Breaks apart each name-value pair
 var data = str.split("&"),

 // Declares variables for use in the loop
 pairs=[], entry={}, key, val;

 // Loops through each name-value pair
 for (x in data)
 {
 // Splits each pair into an array
 pairs = data[x].split("=");

 // The first element is the name
 key = pairs[0];

 // Second element is the value
 val = pairs[1];

 // Stores each value as an object property
 entry[key] = val;
 }
 return entry;
 },

 // Decodes a query string value
 "urldecode" : function(str) {
 // Converts plus signs to spaces
 var converted = str.replace(/\+/g, ' ');

 // Converts any encoded entities back
 return decodeURIComponent(converted);
 }
 };

Next, you implement fx.urldecode in fx.deserialize by adding the following code in bold:

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){
 // Code to add the event goes here
 },

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

278

 // Deserializes the query string and returns
 // an event object
 "deserialize" : function(str){
 // Breaks apart each name-value pair
 var data = str.split("&"),

 // Declares variables for use in the loop
 pairs=[], entry={}, key, val;

 // Loops through each name-value pair
 for (x in data)
 {
 // Splits each pair into an array
 pairs = data[x].split("=");

 // The first element is the name
 key = pairs[0];

 // Second element is the value
 val = pairs[1];

 // Reverses the URL encoding and stores
 // each value as an object property
 entry[key] = fx.urldecode(val);
 }
 return entry;
 },

 "urldecode" : function(str) {...}
 };

Bring It All Together
With fx.deserialize and fx.urldecode in place, you can now modify fx.addevent by adding a variable
(entry) to store the deserialized event data:

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){
 // Converts the query string to an object
 var entry = fx.deserialize(formData);
 },

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

279

 "deserialize" : function(str){...},
 "urldecode" : function(str) {...}
 };

Creating Date Objects
Because only events created for the month being displayed should be added to the calendar, you need to
determine what month and year is being displayed, as well as the month and year that the event occurs.

■ Note For this step you’ll take advantage of JavaScript’s built-in Date object, which provides methods to simplify
many date-related operations. For a full explanation of all available methods associated with the Date object, visit
http://w3schools.com/jsref/jsref_obj_date.asp.

Modifying the Calendar Class with an ID
To generate a Date object for the currently displayed month, you need to add an ID to the h2 element
that displays the month above the calendar. To ensure cross-browser compatibility, modify the
buildCalendar() method in the Calendar class with the following bold code:

 public function buildCalendar()
 {
 /*
 * Determine the calendar month and create an array of
 * weekday abbreviations to label the calendar columns
 */
 $cal_month = date('F Y', strtotime($this->_useDate));
 $cal_id = date('Y-m', strtotime($this->_useDate));
 $weekdays = array('Sun', 'Mon', 'Tue',
 'Wed', 'Thu', 'Fri', 'Sat');

 /*
 * Add a header to the calendar markup
 */
 $html = "\n\t<h2 id=\"month-$cal_id\">$cal_month</h2>";
 for ($d=0, $labels=NULL; $d<7; ++$d)
 {
 $labels .= "\n\t\t" . $weekdays[$d] . "";
 }
 $html .= "\n\t<ul class=\"weekdays\">"
 . $labels . "\n\t";

 // For brevity, the remainder of this method has been omitted
 }

http://w3schools.com/jsref/jsref_obj_date.asp

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

280

■ Note Using the “month-” prefix for the ID means that you stay compliant with W3 standards, which state that
element IDs must begin with a letter.

Building Date Objects in JavaScript
To ensure that the new event falls within the current month, create two empty Date objects: one for the
current month and one for the new event.

To set the value of the current month’s Date object, retrieve the ID attribute from the H2 element
using the .attr() method, split it at the hyphens, and store it in the cdata variable.

For the new event, split the value of entry.event_start at the spaces and take the first array element
(which is the date in the format of YYYY-MM-DD) and store it in a variable called date. Next, split the
information at the hyphens and store the array in a variable called edata.

To set the Date objects, use the data from cdata and edata to set the date in cal and event,
respectively.

Finally, modify fx.addevent with the following bold code:

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){
 // Converts the query string to an object
 var entry = fx.deserialize(formData),

 // Makes a date object for current month
 cal = new Date(NaN),

 // Makes a date object for the new event
 event = new Date(NaN),

 // Extracts the calendar month from the H2 ID
 cdata = $("h2").attr("id").split('-'),

 // Extracts the event day, month, and year
 date = entry.event_start.split(' ')[0],

 // Splits the event data into pieces
 edata = date.split('-');

 // Sets the date for the calendar date object
 cal.setFullYear(cdata[1], cdata[2], 1);

 // Sets the date for the event date object
 event.setFullYear(edata[0], edata[1], edata[2]);
 },

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

281

 "deserialize" : function(str){...},
 "urldecode" : function(str) {...}
 };

Fixing Timezone Inconsistencies
You aren’t passing a time or timezone to the Date object, so that object will default to midnight
Greenwich Mean Time (00:00:00 GMT). This can cause your dates to behave unexpectedly for users in
different timezones. To address this problem, you’ll need to adjust the date by the timezone offset using
two built-in Date object methods: .setMinutes() and .getTimezoneOffset().

The return value of .getTimezoneOffset() is the difference in the number of minutes between GMT
and the user’s timezone. For instance, the return value of .getTimezoneOffset() in Mountain Standard
Time (-0700) is 420.

Using .setMinutes(), you can add the value of the timezone offset to the Date object, which will
return the date to midnight on the given day, no matter what timezone the user is in.

You can make that adjustment using the following bold code:

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){
 // Converts the query string to an object
 var entry = fx.deserialize(formData),

 // Makes a date object for current month
 cal = new Date(NaN),

 // Makes a date object for the new event
 event = new Date(NaN),

 // Extracts the event day, month, and year
 date = entry.event_start.split(' ')[0],

 // Splits the event data into pieces
 edata = date.split('-'),

 // Extracts the calendar month from the H2 ID
 cdata = $("h2").attr("id").split('-');

 // Sets the date for the calendar date object
 cal.setFullYear(cdata[1], cdata[2], 1);

 // Sets the date for the event date object
 event.setFullYear(edata[0], edata[1], edata[2]);

 // Since the date object is created using

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

282

 // GMT, then adjusted for the local timezone,
 // adjust the offset to ensure a proper date
 event.setMinutes(event.getTimezoneOffset());
 },

 "deserialize" : function(str){...},
 "urldecode" : function(str) {...}
 };

Ensuring the Event Occurs in the Current Month
Your next step is to set up a conditional statement that ensures that only events that belong on the
calendar are appended. If both the year and month match between the current calendar month and the
event date, you can extract the day of the month using the Date object’s .getDay() method. To work
properly with the next step, which adds leading zeroes to single-digit dates, you also need to convert this
value to a string, which is accomplished by passing the value to String().

The day of the month needs to have a leading zero to properly match the calendar. For example, if
the returned date is only one digit, you prepend a leading zero to the date.

Do this by inserting the following bold code:

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){
 // Converts the query string to an object
 var entry = fx.deserialize(formData),

 // Makes a date object for current month
 cal = new Date(NaN),

 // Makes a date object for the new event
 event = new Date(NaN),

 // Extracts the event day, month, and year
 date = entry.event_start.split(' ')[0],

 // Splits the event data into pieces
 edata = date.split('-'),

 // Extracts the calendar month from the H2 ID
 cdata = $("h2").attr("id").split('-');

 // Sets the date for the calendar date object
 cal.setFullYear(cdata[1], cdata[2], 1);

 // Sets the date for the event date object
 event.setFullYear(edata[0], edata[1], edata[2]);

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

283

 // Since the date object is created using
 // GMT, then adjusted for the local timezone,
 // adjust the offset to ensure a proper date
 event.setMinutes(event.getTimezoneOffset());

 // If the year and month match, start the process
 // of adding the new event to the calendar
 if (cal.getFullYear()==event.getFullYear()
 && cal.getMonth()==event.getMonth())
 {
 // Gets the day of the month for event
 var day = String(event.getDate());

 // Adds a leading zero to 1-digit days
 day = day.length==1 ? "0"+day : day;
 }
 },

 "deserialize" : function(str){...},
 "urldecode" : function(str) {...}
 };

Appending the Event to the Calendar
You’re finally ready to append the new event to the calendar. To do so, create a new anchor element,
hide it, set its href attribute, and use the title of the event as the link text.

Next, set a one-second delay using .delay(1000) and fade in the new event.
You can implement this by adding the following code shown in bold:

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},

 // Adds a new event to the markup after saving
 "addevent" : function(data, formData){
 // Converts the query string to an object
 var entry = fx.deserialize(formData),

 // Makes a date object for current month
 cal = new Date(NaN),

 // Makes a date object for the new event
 event = new Date(NaN),

 // Extracts the event day, month, and year
 date = entry.event_start.split(' ')[0],

 // Splits the event data into pieces

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

284

 edata = date.split('-'),

 // Extracts the calendar month from the H2 ID
 cdata = $("h2").attr("id").split('-');

 // Sets the date for the calendar date object
 cal.setFullYear(cdata[1], cdata[2], 1);

 // Sets the date for the event date object
 event.setFullYear(edata[0], edata[1], edata[2]);

 // Since the date object is created using
 // GMT, then adjusted for the local timezone,
 // adjust the offset to ensure a proper date
 event.setMinutes(event.getTimezoneOffset());

 // If the year and month match, start the process
 // of adding the new event to the calendar
 if (cal.getFullYear()==event.getFullYear()
 && cal.getMonth()==event.getMonth())
 {
 // Gets the day of the month for event
 var day = String(event.getDate());

 // Adds a leading zero to 1-digit days
 day = day.length==1 ? "0"+day : day;

 // Adds the new date link
 $("<a>")
 .hide()
 .attr("href", "view.php?event_id="+data)
 .text(entry.event_title)
 .insertAfter($("strong:contains("+day+")"))
 .delay(1000)
 .fadeIn("slow");
 }
 },

 "deserialize" : function(str){...},
 "urldecode" : function(str) {...}
 }

■ Note The data variable is undefined as of right now. You’ll remedy this in the next section.

Now, back in the click event handler for the Submit button, modify the success callback of the
$.ajax() function to execute fx.addevent() by using the following bold code:

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

285

// Edits events without reloading
$(".edit-form input[type=submit]").live("click", function(event){

 // Prevents the default form action from executing
 event.preventDefault();

 // Serializes the form data for use with $.ajax()
 var formData = $(this).parents("form").serialize();

 // Sends the data to the processing file
 $.ajax({
 type: "POST",
 url: processFile,
 data: formData,
 success: function(data) {
 // Fades out the modal window
 fx.boxout();

 // Adds the event to the calendar
 fx.addevent(data, formData);
 },
 error: function(msg) {
 alert(msg);
 }
 });

 });

Save this file and reload http://localhost/. Bring up the event creation form and create a new event

with the following information:

• Event Title: Addition Test

• Event Start: 2010-01-09 12:00:00

• Event End: 2010-01-09 14:00:00

• Event Description: This is a test of the dynamic addition of new events to the
calendar.

Submitting the form causes the modal window to fade out; a second later, the new event title will
fade in on the calendar in the proper place (see Figure 8-2).

http://localhost

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

286

Figure 8-2. The calendar after the new event is created

Getting the New Event’s ID
Currently, a new event is not viewable without a page refresh after it is created. Because the event ID is
absent (nothing is returned from a successful event addition), clicking the generated link results in an
empty modal window (see Figure 8-3).

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

287

Figure 8-3. Here the event cannot be loaded because no event ID is available

Modifying the Event Creation Method to Return New Event IDs
To make the event immediately viewable, you only need to make one small adjustment in the Calendar
class. Open the file (/sys/class/class.calendar.inc.php) and locate the processForm() method.

Inside this method, modify the return command to output the ID of the last inserted row using
PDO’s lastInsertId() method:

 public function processForm()
 {
 /*
 * Exit if the action isn't set properly
 */
 if ($_POST['action']!='event_edit')
 {
 return "The method processForm was accessed incorrectly";
 }

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

288

 /*
 * Escape data from the form
 */
 $title = htmlentities($_POST['event_title'], ENT_QUOTES);
 $desc = htmlentities($_POST['event_description'], ENT_QUOTES);
 $start = htmlentities($_POST['event_start'], ENT_QUOTES);
 $end = htmlentities($_POST['event_end'], ENT_QUOTES);

 /*
 * If no event ID passed, create a new event
 */
 if (empty($_POST['event_id']))
 {
 $sql = "INSERT INTO `events`
 (`event_title`, `event_desc`, `event_start`,
 `event_end`)
 VALUES
 (:title, :description, :start, :end)";
 }

 /*
 * Update the event if it's being edited
 */
 else
 {
 /*
 * Cast the event ID as an integer for security
 */
 $id = (int) $_POST['event_id'];
 $sql = "UPDATE `events`
 SET
 `event_title`=:title,
 `event_desc`=:description,
 `event_start`=:start,
 `event_end`=:end
 WHERE `event_id`=$id";
 }

 /*
 * Execute the create or edit query after binding the data
 */
 try
 {
 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(":title", $title, PDO::PARAM_STR);
 $stmt->bindParam(":description", $desc, PDO::PARAM_STR);
 $stmt->bindParam(":start", $start, PDO::PARAM_STR);
 $stmt->bindParam(":end", $end, PDO::PARAM_STR);
 $stmt->execute();
 $stmt->closeCursor();

 /*

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

289

 * Returns the ID of the event
 */
 return $this->db->lastInsertId();
 }
 catch (Exception $e)
 {
 return $e->getMessage();
 }
 }

After making the preceding change, save this file and reload http://localhost/ in your browser.

Next, create a new event with the following information:

• Event Title: ID Test

• Event Start: 2010-01-06 12:00:00

• Event End: 2010-01-06 16:00:00

• Event Description: This event should be immediately viewable after creation.

Now save the event, and the title will appear on the calendar. Click the title, and the event will load
in a modal window (see Figure 8-4).

http://localhost

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

290

Figure 8-4. An event loaded immediately after creation

Editing Events in a Modal Window
In its current state, your app is only a short ways away from allowing users to edit events from the modal
window, as well. The existing click event handler for loading the event creation form will also work for
event editing with only a little modification.

To start, expand the selector to include any element with a class admin; you can accomplish this by
including the following bold code:

// Displays the edit form as a modal window
$(".admin-options form,.admin").live("click", function(event){

 // Prevents the form from submitting
 event.preventDefault();

 // Loads the action for the processing file

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

291

 var action = "edit_event";

 // Loads the editing form and displays it
 $.ajax({
 type: "POST",
 url: processFile,
 data: "action="+action,
 success: function(data){
 // Hides the form
 var form = $(data).hide(),

 // Make sure the modal window exists
 modal = fx.initModal();

 // Call the boxin function to create
 // the modal overlay and fade it in
 fx.boxin(null, modal);

 // Load the form into the window,
 // fades in the content, and adds
 // a class to the form
 form
 .appendTo(modal)
 .addClass("edit-form")
 .fadeIn("slow");
 },
 error: function(msg){
 alert(msg);
 }
 });
 });

Determining the Form Action
In the editing controls displayed for individual events, the button names describe the action taken by the
button (e.g., edit_event for the Edit This Event button and delete_event for the Delete This Event
button). These buttons will be used by ajax.inc.php as the action for the submission.

Because the event creation button doesn’t have a button name, you need to keep a default value
(edit_event).

To access the name of the clicked button, you’ll use a property of the event object called target.
This property contains a reference to the element that triggered the event. Use jQuery to select the event
target and use .attr() to retrieve its name.

Now modify the event handler using the following bold code:

// Displays the edit form as a modal window
$(".admin-options form,.admin").live("click", function(event){

 // Prevents the form from submitting
 event.preventDefault();

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

292

 // Sets the action for the form submission
 var action = $(event.target).attr("name") || "edit_event";

 // Loads the editing form and displays it
 $.ajax({
 type: "POST",
 url: processFile,
 data: "action="+action,
 success: function(data){
 // Hides the form
 var form = $(data).hide(),

 // Make sure the modal window exists
 modal = fx.initModal();

 // Call the boxin function to create
 // the modal overlay and fade it in
 fx.boxin(null, modal);

 // Load the form into the window,
 // fades in the content, and adds
 // a class to the form
 form
 .appendTo(modal)
 .addClass("edit-form")
 .fadeIn("slow");
 },
 error: function(msg){
 alert(msg);
 }
 });
 });

Storing the Event ID if One Exists
Next, the event ID needs to be extracted, assuming it’s available. To find this value, use the event.target
property again, but this time look for the sibling element with the name, event_id, and then store the
value of this in a variable called id.

You add this to the event handler using the following bold code:

// Displays the edit form as a modal window
$(".admin-options form,.admin").live("click", function(event){

 // Prevents the form from submitting
 event.preventDefault();

 // Sets the action for the form submission
 var action = $(event.target).attr("name") || "edit_event",

 // Saves the value of the event_id input

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

293

 id = $(event.target)
 .siblings("input[name=event_id]")
 .val();

 // Loads the editing form and displays it
 $.ajax({
 type: "POST",
 url: processFile,
 data: "action="+action,
 success: function(data){
 // Hides the form
 var form = $(data).hide(),

 // Make sure the modal window exists
 modal = fx.initModal();

 // Call the boxin function to create
 // the modal overlay and fade it in
 fx.boxin(null, modal);

 // Load the form into the window,
 // fades in the content, and adds
 // a class to the form
 form
 .appendTo(modal)
 .addClass("edit-form")
 .fadeIn("slow");
 },
 error: function(msg){
 alert(msg);
 }
 });
 });

Adding the Event ID to the Query String
With the ID stored in the id variable, you can now append the value to the query string for submission to
ajax.inc.php.

Check whether id is undefined first, and then create an event_id name-value pair. Next, attach the
data to the query string using the following bold code:

// Displays the edit form as a modal window
$(".admin-options form,.admin").live("click", function(event){

 // Prevents the form from submitting
 event.preventDefault();

 // Sets the action for the form submission
 var action = $(event.target).attr("name") || "edit_event",

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

294

 // Saves the value of the event_id input
 id = $(event.target)
 .siblings("input[name=event_id]")
 .val();

 // Creates an additional param for the ID if set
 id = (id!=undefined) ? "&event_id="+id : "";

 // Loads the editing form and displays it
 $.ajax({
 type: "POST",
 url: processFile,
 data: "action="+action+id,
 success: function(data){
 // Hides the form
 var form = $(data).hide(),

 // Make sure the modal window exists
 modal = fx.initModal();

 // Call the boxin function to create
 // the modal overlay and fade it in
 fx.boxin(null, modal);

 // Load the form into the window,
 // fades in the content, and adds
 // a class to the form
 form
 .appendTo(modal)
 .addClass("edit-form")
 .fadeIn("slow");
 },
 error: function(msg){
 alert(msg);
 }
 });
 });

Remove Event Data from the Modal Window
To replace the content of the modal window with the editing form, you must first remove the event
display information.

Where you’ve called fx.initModal() in the success handler, select all children that are not the Close
button and remove them. After removing them, call .end() to revert back to the original selection of the
modal window. (After calling children, the jQuery object only references the child elements you just
removed.)

You can accomplish this by adding the following bold code:

// Displays the edit form as a modal window
$(".admin-options form,.admin").live("click", function(event){

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

295

 // Prevents the form from submitting
 event.preventDefault();

 // Sets the action for the form submission
 var action = $(event.target).attr("name") || "edit_event",

 // Saves the value of the event_id input
 id = $(event.target)
 .siblings("input[name=event_id]")
 .val();

 // Creates an additional param for the ID if set
 id = (id!=undefined) ? "&event_id="+id : "";

 // Loads the editing form and displays it
 $.ajax({
 type: "POST",
 url: processFile,
 data: "action="+action+id,
 success: function(data){
 // Hides the form
 var form = $(data).hide(),

 // Make sure the modal window exists
 modal = fx.initModal()
 .children(":not(.modal-close-btn)")
 .remove()
 .end();

 // Call the boxin function to create
 // the modal overlay and fade it in
 fx.boxin(null, modal);

 // Load the form into the window,
 // fades in the content, and adds
 // a class to the form
 form
 .appendTo(modal)
 .addClass("edit-form")
 .fadeIn("slow");
 },
 error: function(msg){
 alert(msg);
 }
 });
 });

After saving this file and reloading http://localhost/ in your browser, click the New Year's Day

event title to bring up the event description. Inside the modal window, click the Edit This Event button;

http://localhost

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

296

this causes the event description to disappear, and the editing form will fade in with the data for the
entry loaded into the form for editing (see Figure 8-5).

Figure 8-5. Editing an event in a modal window

Ensuring Only New Events Are Added to the Calendar
If you make an edit to the New Year’s Day event and save it, an extra event title will be appended to the
calendar (see Figure 8-6).

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

297

Figure 8-6. After you edit an event, its title is duplicated

To avoid this, you need to add an additional tweak to the form submission click handler. Because
events being edited will have their ID loaded in the editing form’s hidden input named event_id, you
can check for a length in the input’s value. If the length is not zero, don’t call fx.addevent().

Insert the following bold code to make this check:

// Edits events without reloading
$(".edit-form input[type=submit]").live("click", function(event){

 // Prevents the default form action from executing
 event.preventDefault();

 // Serializes the form data for use with $.ajax()
 var formData = $(this).parents("form").serialize();

 // Sends the data to the processing file
 $.ajax({
 type: "POST",

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

298

 url: processFile,
 data: formData,
 success: function(data) {
 // Fades out the modal window
 fx.boxout();

 // If this is a new event, adds it to
 // the calendar
 if ($("[name=event_id]").val().length==0)
 {
 fx.addevent(data, formData);
 }
 },
 error: function(msg) {
 alert(msg);
 }
 });

 });

With this change in place, your users can now edit events without seeing potentially confusing

duplicate titles.

Confirming Deletion in a Modal Window
To round out your application, you’re also going to allow users to delete entries without a page refresh. A
good portion of the script you need to do this is already in place, so adding this functionality will mostly
require tweaks to your existing code.

Displaying the Confirmation Dialog
To display the confirmation dialog for event deletion when the Delete This Event button is clicked, you
need to add an additional element to the lookup array in ajax.inc.php:

<?php

/*
 * Enable sessions
 */
session_start();

/*
 * Include necessary files
 */
include_once '../../../sys/config/db-cred.inc.php';

/*
 * Define constants for config info
 */

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

299

foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a lookup array for form actions
 */
$actions = array(
 'event_view' => array(
 'object' => 'Calendar',
 'method' => 'displayEvent'
),
 'edit_event' => array(
 'object' => 'Calendar',
 'method' => 'displayForm'
),
 'event_edit' => array(
 'object' => 'Calendar',
 'method' => 'processForm'
),
 'delete_event' => array(
 'object' => 'Calendar',
 'method' => 'confirmDelete'
)
);

/*
 * Make sure the anti-CSRF token was passed and that the
 * requested action exists in the lookup array
 */
if (isset($actions[$_POST['action']]))
{
 $use_array = $actions[$_POST['action']];
 $obj = new $use_array['object']($dbo);

 /*
 * Check for an ID and sanitize it if found
 */
 if (isset($_POST['event_id']))
 {
 $id = (int) $_POST['event_id'];
 }
 else { $id = NULL; }

 echo $obj->$use_array['method']($id);
}

function __autoload($class_name)
{
 $filename = '../../../sys/class/class.'

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

300

 . strtolower($class_name) . '.inc.php';
 if (file_exists($filename))
 {
 include_once $filename;
 }
}

?>

Clicking the Delete This Event button from a modal window at this point now causes the

confirmation dialog to appear (see Figure 8-7).

Figure 8-7. The confirmation dialog to delete an event displayed in a modal window

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

301

Configuring the Form Submission Event Handler for Deletion
Confirming event deletion requires a little more modification to init.js. To execute properly, the value
of the Submit button needs to be stored and passed to the processing file. This is because the form can
be submitted with either Yes, Delete It or Nope! Just Kidding! as values; the script checks which
button was clicked to determine what action to take.

To store the button’s value, use the this keyword as the jQuery selector, and then store the returned
string from .val() as a variable called submitVal. Next, check whether the button’s name attribute is
confirm_delete. If so, append the action confirm_delete and the value of the button to the query string
before submitting it.

Insert the following code shown in bold to accomplish this:

// Edits events without reloading
$(".edit-form input[type=submit]").live("click", function(event){

 // Prevents the default form action from executing
 event.preventDefault();

 // Serializes the form data for use with $.ajax()
 var formData = $(this).parents("form").serialize(),

 // Stores the value of the submit button
 submitVal = $(this).val();

 // If this is the deletion form, appends an action
 if ($(this).attr("name")=="confirm_delete")
 {
 // Adds necessary info to the query string
 formData += "&action=confirm_delete"
 + "&confirm_delete="+submitVal;
 }

 // Sends the data to the processing file
 $.ajax({
 type: "POST",
 url: processFile,
 data: formData,
 success: function(data) {
 // Fades out the modal window
 fx.boxout();

 // If this is a new event, adds it to
 // the calendar
 if ($("[name=event_id]").val().length==0)
 {
 fx.addevent(data, formData);
 }
 },
 error: function(msg) {
 alert(msg);
 }

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

302

 });

 });

Modifying the Processing File to Confirm Deletion
Finally, you need to add an additional element to the lookup array in ajax.inc.php to make the Delete
button work:

<?php

/*
 * Enable sessions
 */
session_start();

/*
 * Include necessary files
 */
include_once '../../../sys/config/db-cred.inc.php';

/*
 * Define constants for config info
 */
foreach ($C as $name => $val)
{
 define($name, $val);
}

/*
 * Create a lookup array for form actions
 */
$actions = array(
 'event_view' => array(
 'object' => 'Calendar',
 'method' => 'displayEvent'
),
 'edit_event' => array(
 'object' => 'Calendar',
 'method' => 'displayForm'
),
 'event_edit' => array(
 'object' => 'Calendar',
 'method' => 'processForm'
),
 'delete_event' => array(
 'object' => 'Calendar',
 'method' => 'confirmDelete'
),
 'confirm_delete' => array(

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

303

 'object' => 'Calendar',
 'method' => 'confirmDelete'
)
);

/*
 * Make sure the anti-CSRF token was passed and that the
 * requested action exists in the lookup array
 */
if (isset($actions[$_POST['action']]))
{
 $use_array = $actions[$_POST['action']];
 $obj = new $use_array['object']($dbo);

 /*
 * Check for an ID and sanitize it if found
 */
 if (isset($_POST['event_id']))
 {
 $id = (int) $_POST['event_id'];
 }
 else { $id = NULL; }

 echo $obj->$use_array['method']($id);
}

function __autoload($class_name)
{
 $filename = '../../../sys/class/class.'
 . strtolower($class_name) . '.inc.php';
 if (file_exists($filename))
 {
 include_once $filename;
 }
}

?>

You can test the preceding code by deleting the ID Test event from the calendar. After the modal

window fades out, the event title is still present and clickable; however, if you try to view the event’s
details, its information is unavailable, and it doesn’t make sense (see Figure 8-8).

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

304

Figure 8-8. Because the event no longer exists, the event view makes no sense

Remove the Event from the Calendar After Deletion
You want to avoid the confusion caused by having non-existent events on the calendar after a user
deletes them, so you need to add functionality to remove events from the calendar once this occurs.

To do this, you’ll add a new function to the fx object literal called removeevent. This function will use
the active class applied to events when they’re brought up in the modal window to fade them out and
remove them from the DOM. You can add this function to fx using the following bold code:

 fx = {
 "initModal" : function() {...},
 "boxin" : function(data, modal) {...},
 "boxout" : function(event) {...},
 "addevent" : function(data, formData){...},

 // Removes an event from the markup after deletion

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

305

 "removeevent" : function()
 {
 // Removes any event with the class "active"
 $(".active")
 .fadeOut("slow", function(){
 $(this).remove();
 });
 },

 "deserialize" : function(str){...},
 "urldecode" : function(str) {...}
 };

Modifying the Form Submission Handler to Remove Deleted Events
To remove events after they are deleted, add a new variable called remove to the form submission event
handler. This will store a boolean value that tells the script whether to remove an event. By default, this
value will be set to false, which means the event should not be removed.

The only condition under which an event should be removed is if the Yes, Delete It button is clicked
from the confirmation dialog. Add a check for this text in the Submit button and set remove to true if a
match is made.

Inside the success handler, set up a conditional that checks whether remove is true and fires
fx.removeevent() if it is.

Finally, to prevent empty elements from being added to the calendar, modify the conditional that
fires fx.addevent() to ensure that remove is false before executing.

You can make these changes by adding the code shown in bold:

// Edits events without reloading
$(".edit-form input[type=submit]").live("click", function(event){

 // Prevents the default form action from executing
 event.preventDefault();

 // Serializes the form data for use with $.ajax()
 var formData = $(this).parents("form").serialize(),

 // Stores the value of the submit button
 submitVal = $(this).val(),

 // Determines if the event should be removed
 remove = false;

 // If this is the deletion form, appends an action
 if ($(this).attr("name")=="confirm_delete")
 {
 // Adds necessary info to the query string
 formData += "&action=confirm_delete"
 + "&confirm_delete="+submitVal;

 // If the event is really being deleted, sets

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

306

 // a flag to remove it from the markup
 if (submitVal=="Yes, Delete It")
 {
 remove = true;
 }
 }

 // Sends the data to the processing file
 $.ajax({
 type: "POST",
 url: processFile,
 data: formData,
 success: function(data) {
 // If this is a deleted event, removes
 // it from the markup
 if (remove===true)
 {
 fx.removeevent();
 }

 // Fades out the modal window
 fx.boxout();

 // If this is a new event, adds it to
 // the calendar
 if ($("[name=event_id]").val().length==0
 && remove===false)
 {
 fx.addevent(data, formData);
 }
 },
 error: function(msg) {
 alert(msg);
 }
 });

 });

Save these changes, then reload http://localhost/ and pull up the Test Event description. Delete

the event; after you click the Yes, Delete It button, the modal box and event title will fade out, effectively
eliminating the event from the calendar and eliminating any potential confusion for your users (see
Figure 8-9).

http://localhost

CHAPTER 8 ■ EDITING THE CALENDAR WITH AJAX AND JQUERY

307

Figure 8-9. After deleting "Test Event", the event title is removed from the calendar

Summary
In this chapter, you implemented controls that allow your users to quickly create, edit, and delete events
without being required to refresh the page. This makes the application feel much more streamlined and
user-friendly.

In the next chapter, you’ll learn how to use regular expressions to ensure that the data entered in the
editing forms is valid, ensuring that your app won’t allow data that could potentially break it to be
entered into the database.

P A R T 4
■ ■ ■

Advancing jQuery and PHP

At this point, you've got a functional calendar application. However, there are some

things that you could add to improve the user experience, such as form validation.

This part of the book will also cover advanced techniques such as validating user input

with regular expressions and building custom jQuery plugins.

C H A P T E R 9

■ ■ ■

311

Performing Form Validation
with Regular Expressions

It’s your responsibility as a developer to ensure that your users’ data is useful to your app, so you need to
ensure that critical information is validated before storing it in your database.

In the case of the calendar application, the date format is critical: if the format isn’t correct, the app
will fail in several places. To verify that only valid dates are allowed into the database, you’ll use regular
expressions (regexes), which are powerful pattern-matching tools that allow developers much more
control over data than a strict string comparison search.

Before you can get started with adding validation to your application, you need to get comfortable
using regular expressions. In the first section of this chapter, you’ll learn how to use the basic syntax of
regexes. Then you’ll put regexes to work doing server-side and client-side validation.

Getting Comfortable with Regular Expressions
Regular expressions are often perceived as intimidating, difficult tools. In fact, regexes have such a bad
reputation among programmers that discussions about them are often peppered with this quote:

Some people, when confronted with a problem, think, “I know, I’ll use regular
expressions.” Now they have two problems.

—Jamie Zawinski

This sentiment is not entirely unfounded because regular expressions come with a complex syntax
and little margin for error. However, after overcoming the initial learning curve, regexes are an
incredibly powerful tool with myriad applications in day-to-day programming.

Understanding Basic Regular Expression Syntax
In this book, you’ll learn Perl-Compatible Regular Expression (PCRE) syntax. This syntax is compatible
with PHP and JavaScript, as well as most other programming languages.

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

312

■ Note You can read more about PCRE at
http://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions.

Setting up a Test File
To learn how to use regexes, you’ll need a file to use for testing. In the public folder, create a new file
called regex.php and place the following code inside it:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title>Regular Expression Demo</title>
 <style type="text/css">
 em {
 background-color: #FF0;
 border-top: 1px solid #000;
 border-bottom: 1px solid #000;
 }
 </style>
</head>

<body>
<?php

/*
 * Store the sample set of text to use for the examples of regex
 */
$string = <<<TEST_DATA

<h2>Regular Expression Testing</h2>
<p>
 In this document, there is a lot of text that can be matched
 using regex. The benefit of using a regular expression is much
 more flexible — albeit complex — syntax for text
 pattern matching.
</p>
<p>
 After you get the hang of regular expressions, also called
 regexes, they will become a powerful tool for pattern matching.
</p>
<hr />
TEST_DATA;

http://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

313

/*
 * Start by simply outputting the data
 */
echo $string;

?>

</body>

</html>

Save this file, then load http://localhost/regex.php in your browser to view the sample script (see

Figure 9-1).

Figure 9-1. The sample file for testing regular expressions

Replacing Text with Regexes
To test regular expressions, you’ll wrap matched patterns with tags, which are styled in the test
document to have top and bottom borders, as well as a yellow background.

Accomplishing this with regexes is similar using str_replace() in PHP with the preg_replace()
function. A pattern to match is passed, followed by a string (or pattern) to replace the matched pattern
with. Finally, the string within which the search is to be performed is passed:

preg_replace($pattern, $replacement, $string);

■ Note The p in preg_replace() signifies the use of PCRE. PHP also has ereg_replace(), which uses the
slightly different POSIX regular expression syntax; however, the ereg family of functions has been deprecated as
of PHP 5.3.0.

http://localhost/regex.php

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

314

The only difference between str_replace() and preg_replace() on a basic level is that the element
passed to preg_replace() for the pattern must use delimiters, which let the function know which part of
the regex is the pattern and which part consists of modifiers, or flags that affect how the pattern matches.
You’ll learn more about modifiers a little later in this section.

The delimiters for regex patterns in preg_replace() can be any non-alphanumeric, non-backslash,
and non-whitespace characters placed at the beginning and end of the pattern. Most commonly,
forward slashes (/) or hash signs (#) are used. For instance, if you want to search for the letters cat in a
string, the pattern would be /cat/ (or #cat#, %cat%, @cat@, and so on).

Choosing Regexes vs. Regular String Replacement
To explore the differences between str_replace() and preg_replace(), try using both functions to wrap
any occurrence of the word regular with tags. Make the following modifications to regex.php:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title>Regular Expression Demo</title>
 <style type="text/css">
 em {
 background-color: #FF0;
 border-top: 1px solid #000;
 border-bottom: 1px solid #000;
 }
 </style>
</head>

<body>
<?php

/*
 * Store the sample set of text to use for the examples of regex
 */
$string = <<<TEST_DATA

<h2>Regular Expression Testing</h2>
<p>
 In this document, there is a lot of text that can be matched
 using regex. The benefit of using a regular expression is much
 more flexible — albeit complex — syntax for text
 pattern matching.
</p>
<p>
 After you get the hang of regular expressions, also called

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

315

 regexes, they will become a powerful tool for pattern matching.
</p>
<hr />
TEST_DATA;

/*
 * Use str_replace() to highlight any occurrence of the word
 * "regular"
 */
echo str_replace("regular", "regular", $string);

/*
 * Use preg_replace() to highlight any occurrence of the word
 * "regular"
 */
echo preg_replace("/regular/", "regular", $string);

?>

</body>

</html>

Executing this script in your browser outputs the test information twice, with identical results (see

Figure 9-2).

Figure 9-2. The word regular highlighted with both regexes and regular string replacement

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

316

Drilling Down on the Basics of Pattern Modifiers
You may have noticed that the word regular in the title is not highlighted. This is because the previous
example is case sensitive.

To solve this problem with simple string replacement, you can opt to use the str_ireplace()
function, which is nearly identical to str_replace(), except that it is case insensitive.

With regular expressions, you will still use preg_replace(), but you’ll need a modifier to signify case
insensitivity. A modifier is a letter that follows the pattern delimiter, providing additional information to
the regex about how it should handle patterns. For case insensitivity, the modifier i should be applied.

Modify regex.php to use case-insensitive replacement functions by making the modifications shown
in bold:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title>Regular Expression Demo</title>
 <style type="text/css">
 em {
 background-color: #FF0;
 border-top: 1px solid #000;
 border-bottom: 1px solid #000;
 }
 </style>
</head>

<body>
<?php

/*
 * Store the sample set of text to use for the examples of regex
 */
$string = <<<TEST_DATA

<h2>Regular Expression Testing</h2>
<p>
 In this document, there is a lot of text that can be matched
 using regex. The benefit of using a regular expression is much
 more flexible — albeit complex — syntax for text
 pattern matching.
</p>
<p>
 After you get the hang of regular expressions, also called
 regexes, they will become a powerful tool for pattern matching.
</p>
<hr />

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

317

TEST_DATA;

/*
 * Use str_ireplace() to highlight any occurrence of the word
 * "regular"
 */
echo str_ireplace("regular", "regular", $string);

/*
 * Use preg_replace() to highlight any occurrence of the word
 * "regular"
 */
echo preg_replace("/regular/i", "regular", $string);

?>

</body>

</html>

Now loading the file in your browser will highlight all occurrences of the word regular, regardless of

case (see Figure 9-3).

Figure 9-3. A case-insensitive search of the sample data

As you can see, this approach has a drawback: the capitalized regular in the title is changed to
lowercase when it is replaced. In the next section, you’ll learn how to avoid this issue by using groups
in regexes.

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

318

Getting Fancy with Backreferences
The power of regexes starts to appear when you apply one of their most useful features: grouping and
backreferences. A group is any part of a pattern that is enclosed in parentheses. A group can be used in
the replacement string (or later in the pattern) with a backreference, a numbered reference to a named
group.

This all sounds confusing, but in practice it’s quite simple. Each set of parentheses from left to right
in a regex is stored with a numeric backreference, which can be accessed using a backslash and the
number of the backreference (\1) or by using a dollar sign and the number of the backreference ($1).

The benefit of this is that it gives regexes the ability to use the matched value in the replacement,
instead of a predetermined value as in str_replace() and its ilk.

To keep the replacement contents in your previous example in the proper case, you need to use two
occurrences of str_replace(); however, you can achieve the same effect by using a backreference in
preg_replace()with just one function call.

Make the following modifications to regex.php to see the power of backreferences in regexes:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title>Regular Expression Demo</title>
 <style type="text/css">
 em {
 background-color: #FF0;
 border-top: 1px solid #000;
 border-bottom: 1px solid #000;
 }
 </style>
</head>

<body>
<?php

/*
 * Store the sample set of text to use for the examples of regex
 */
$string = <<<TEST_DATA

<h2>Regular Expression Testing</h2>
<p>
 In this document, there is a lot of text that can be matched
 using regex. The benefit of using a regular expression is much
 more flexible — albeit complex — syntax for text
 pattern matching.
</p>
<p>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

319

 After you get the hang of regular expressions, also called
 regexes, they will become a powerful tool for pattern matching.
</p>
<hr />
TEST_DATA;

/*
 * Use str_replace() to highlight any occurrence of the word
 * "regular"
 */
$check1 = str_replace("regular", "regular", $string);

/*
 * Use str_replace() again to highlight any capitalized occurrence
 * of the word "Regular"
 */
echo str_replace("Regular", "Regular", $check1);

/*
 * Use preg_replace() to highlight any occurrence of the word
 * "regular", case-insensitive
 */
echo preg_replace("/(regular)/i", "$1", $string);

?>

</body>

</html>

As the preceding code illustrates, it’s already becoming cumbersome to use str_replace() for any

kind of complex string matching. After saving the preceding changes and reloading your browser,
however, you can achieve the desired outcome using both regexes and standard string replacement (see
Figure 9-4).

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

320

Figure 9-4. A more complex replacement

■ Note The remaining examples in this section will use only regexes.

Matching Character Classes
In some cases, it’s desirable to match more than just a word. For instance, sometimes you want to verify
that only a certain range of characters was used (i.e., to make sure only numbers were supplied for a
phone number or that no special characters were used in a username field).

Regexes allow you to specify a character class, which is a set of characters enclosed in square
brackets. For instance, to match any character between the letter a and the letter c, you would use [a-c]
in your pattern.

You can modify regex.php to highlight any character from A-C. Additionally, you can move the
pattern into a variable and output it at the bottom of the sample data; this helps you see what pattern is
being used when the script is loaded. Add the code shown in bold to accomplish this:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title>Regular Expression Demo</title>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

321

 <style type="text/css">
 em {
 background-color: #FF0;
 border-top: 1px solid #000;
 border-bottom: 1px solid #000;
 }
 </style>
</head>

<body>
<?php

/*
 * Store the sample set of text to use for the examples of regex
 */
$string = <<<TEST_DATA

<h2>Regular Expression Testing</h2>
<p>
 In this document, there is a lot of text that can be matched
 using regex. The benefit of using a regular expression is much
 more flexible — albeit complex — syntax for text
 pattern matching.
</p>
<p>
 After you get the hang of regular expressions, also called
 regexes, they will become a powerful tool for pattern matching.
</p>
<hr />
TEST_DATA;

/*
 * Use regex to highlight any occurence of the letters a-c
 */
$pattern = "/([a-c])/i";
echo preg_replace($pattern, "$1", $string);

/*
 * Output the pattern you just used
 */
echo "\n<p>Pattern used: $pattern</p>";

?>

</body>

</html>

After reloading the page, you’ll see the characters highlighted (see Figure 9-5). You can achieve

identical results using [abc], [bac], or any other combination of the characters because the class will
match any one character from the class. Also, because you’re using the case-insensitive modifier (i), you

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

322

don’t need to include both uppercase and lowercase versions of the letters. Without the modifier, you
would need to use [A-Ca-c] to match either case of the three letters.

Figure 9-5. Any character from A-C is highlighted

Matching Any Character Except...
To match any character except those in a class, prefix the character class with a caret (^). To highlight
any characters except A-C, you would use the pattern /([^a-c])/i (see Figure 9-6).

Figure 9-6. Highlighting all characters, except letters A-C

■ Note It’s important to mention that the preceding patterns enclose the character class within parentheses.
Character classes do not store backreferences, so parentheses still must be used to reference the matched text
later.

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

323

Using Character Class Shorthand
Certain character classes have a shorthand character. For example, there is a shorthand class for every
word, digit, or space character:

• Word character class shorthand (\w): Matches patterns like [A-Za-z0-9_]

• Digit character class shorthand (\d): Matches patterns like [0-9]

• Whitespace character class shorthand (\s): Matches patterns like [\t\r\n]

Using these three shorthand classes can improve the readability of your regexes, which is extremely
convenient when you’re dealing with more complex patterns.

You can exclude a particular type of character by capitalizing the shorthand character:

• Non-word character class shorthand (\W): Matches patterns like [^A-Za-z0-9_]

• Non-digit character class shorthand (\D): Matches patterns like [^0-9]

• Non-whitespace character class shorthand (\S): Matches patterns like [^ \t\r\n]

■ Note \t, \r, and \n are special characters that represent tabs and newlines; a space is represented by a
regular space character ().

Finding Word Boundaries
Another special symbol to be aware of is the word boundary symbol (\b). By placing this before and/or
after a pattern, you can ensure that the pattern isn’t contained within another word. For instance, if you
want to match the word stat, but not thermostat, statistic, or ecstatic, you would use this pattern:
/\bstat\b/.

Using Repetition Operators
When you use character classes, only one character out of the set is matched, unless the pattern specifies
a different number of characters. Regular expressions give you several ways to specify a number of
characters to match:

• The star operator (*) matches zero or more occurrences of a character.

• The plus operator (+) matches one or more occurrences of a character.

• The special repetition operator ({min,max}) allows you to specify a range of
character matches.

Matching zero or more characters is useful when using a string that may or may not have a certain
piece of a pattern in it. For example, if you want to match all occurrences of either John or John Doe, you
can use this pattern to match both instances: /John(Doe)*/.

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

324

Matching one or more characters is good for verifying that at least one character was entered. For
instance, if you want to verify that a user enters at least one character into a form input and that the
character is a valid word character, you can use this pattern to validate the input: /\w+/.

Finally, matching a specific range of characters is especially useful when matching numeric ranges.
For instance, you can use this pattern to ensure a value is between 0 and 99: /\b\d{1,2}\b/.

In your example file, you use this regex pattern to find any words consisting of exactly four letters:
/(\b\w{4}\b)/ (see Figure 9-7).

Figure 9-7. Matching only words that consist of exactly four letters

Detecting the Beginning or End of a String
Additionally, you can force the pattern to match from the beginning or end of the string (or both). If the
pattern starts with a caret (^), the regex will only match if the pattern starts with a matching character. If
it ends with a dollar sign ($), the regex will match only if the string ends with the preceding matching
character.

You can combine these different symbols to make sure an entire string matches a pattern. This is
useful when validating input because you can verify that the user only submitted valid information. For
instance, you can you can use this regex pattern to verify that a username contains only the letters A-Z,
the numbers 0-9, and the underscore character: /^\w+$/.

Using Alternation
In some cases, it’s desirable to use either one pattern or another. This is called alternation, and it’s
accomplished using a pipe character (|). This approach allows you to define two or more possibilities for
a match. For instance, you can use this pattern to match either three-, six-, or seven-letter words in
regex.php: /\b(\w{3}|\w{6,7})\b/ (see Figure 9-8).

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

325

Figure 9-8. Using alternation to match only three-, six-, and seven-letter words

Using Optional Items
In some cases, it becomes necessary to allow certain items to be optional. For instance, to match both
single and plural forms of a word like expression, you need to make the s optional.

To do this, place a question mark (?) after the optional item. If the optional part of the pattern is
longer than one character, it needs to be captured in a group (you’ll use this technique in the next
section).

For now, use this pattern to highlight all occurrences of the word expression or expressions:
/(expressions?)/i (see Figure 9-9).

Figure 9-9. Matching a pattern with an optional s at the end

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

326

Putting It All Together
Now that you’ve got a general understanding of regular expressions, it’s time to use your new knowledge
to write a regex pattern that will match any occurrence of the phrases regular expression or regex,
including the plural forms.

To start, look for the phrase regex: /(regex)/i (see Figure 9-10).

Figure 9-10. Matching the word regex

Next, add the ability for the phrase to be plural by inserting an optional es at the end:
/(regex(es)?)/i (see Figure 9-11).

Figure 9-11. Adding the optional match for the plural form of regex

Next, you will add to the pattern so that it also matches the word regular with a space after it; you
will also make the match optional: /(reg(ular\s)?ex(es)?)/i (see Figure 9-12).

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

327

Figure 9-12. Adding an optional check for the word regular

Now expand the pattern to match the word expression as an alternative to es:
/(reg(ular\s)?ex(pression|es)?)/i (see Figure 9-13).

Figure 9-13. Adding alternation to match expression

Finally, add an optional s to the end of the match for expression:
/(reg(ular\s)?ex(pressions?|es)?)/i (see Figure 9-14).

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

328

Figure 9-14. The completed regular expression

■ Tip The examples in this chapter go over the most common features of regular expressions, but they don’t
cover everything that regexes have to offer. Jan Goyvaerts has put together a fantastic resource for learning all of
the ins-and-outs of regexes, as well as some tools for testing them, at
http://www.regular-expressions.info/.

Adding Server-Side Date Validation
Now that you have a basic understanding of regexes, you’re ready to start validating user input. For this
app, you need to ensure that the date format is correct, so that the app doesn’t crash by attempting to
parse a date that it can’t understand.

You’ll begin by adding server-side validation. This is more of a fallback because later you’ll add
validation with jQuery. However, you should never rely solely on JavaScript to validate user input
because the user can easily turn off JavaScript support and therefore completely disable your JavaScript
validation efforts.

Defining the Regex Pattern to Validate Dates
The first step toward implementing date validation is to define a regex pattern to match the desired
format. The format the calendar app uses is YYYY-MM-DD HH:MM:SS.

Setting up Test Data
You need to modify regex.php with a valid date format and a few invalid formats, so you can test your
pattern. Start by matching zero or more numeric characters with your regex pattern. Do this by making
the following changes shown in bold:

http://www.regular-expressions.info

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

329

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title>Regular Expression Demo</title>
 <style type="text/css">
 em {
 background-color: #FF0;
 border-top: 1px solid #000;
 border-bottom: 1px solid #000;
 }
 </style>
</head>

<body>
<?php

/*
 * Set up several test date strings to ensure validation is working
 */
$date[] = '2010-01-14 12:00:00';
$date[] = 'Saturday, May 14th at 7pm';
$date[] = '02/03/10 10:00pm';
$date[] = '2010-01-14 102:00:00';

/*
 * Date validation pattern
 */
$pattern = "/(\d*)/";

foreach ($date as $d)
{
 echo "<p>", preg_replace($pattern, "$1", $d), "</p>";
}

/*
 * Output the pattern you just used
 */
echo "\n<p>Pattern used: $pattern</p>";

?>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

330

After saving the preceding code, reload http://localhost/regex.php in your browser to see all
numeric characters highlighted (see Figure 9-15).

Figure 9-15. Matching any numeric character

Matching the Date Format
To match the date format, start by matching exactly four digits at the beginning of the string to validate
the year: /^(\d{4})/ (see Figure 9-16).

Figure 9-16. Validating the year section of the date string

Next, you need to validate the month by matching the hyphen and two more digits: /^(\d{4}(-
\d{2}))/ (see Figure 9-17).

http://localhost/regex.php

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

331

Figure 9-17. Expanding the validate month section of the date string

Notice that the month and date sections are identical: a hyphen followed by two digits. This means
you can simply repeat the month-matching pattern to validate the day using a repetition operator after
the group: /^(\d{4}(-\d{2}){2})/ (see Figure 9-18).

Figure 9-18. Adding the day part of the date string to the pattern

Now match a single space and the hour section: /^(\d{4}(-\d{2}){2} (\d{2}))/ (see Figure 9-19).

■ Note Make sure that you include the space character. The shorthand class (\s) shouldn’t be used because new
lines and tabs should not match in this instance.

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

332

Figure 9-19. Validating the hour section of the date string

To validate the minutes, you match a colon and exactly two digits: /^(\d{4}(-\d{2}){2}
(\d{2})(:\d{2}))/ (see Figure 9-20).

Figure 9-20. Validating the minutes section of the date string

Finally, repeat the pattern for the minutes to match the seconds, and then use the dollar sign
modifier to match the end of the string: /^(\d{4}(-\d{2}){2} (\d{2})(:\d{2}){2})$/ (see Figure 9-21).

Figure 9-21. Validating the seconds section of the date string and completing the pattern

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

333

Armed with this regex pattern, you can now validate the date input in your application.

Adding a Validation Method to the Calendar Class
To validate the date string, you will add a new private method to the Calendar class called _validDate().

This method will accept the date string to be validated, then compare it to the validation pattern
using preg_match(), which returns the number of matches found in the given string. Because this
particular pattern will only match if the entire string conforms to the pattern, a valid date will return 1,
while an invalid date will return 0.

If the date is valid, the method will return TRUE; otherwise, it will return FALSE.
Add this method to the Calendar class by inserting the following bold code into

class.calendar.inc.php:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 public function displayEvent($id) {...}

 public function displayForm() {...}

 public function processForm() {...}

 public function confirmDelete($id) {...}

 /**
 * Validates a date string
 *
 * @param string $date the date string to validate
 * @return bool TRUE on success, FALSE on failure
 */
 private function _validDate($date)
 {
 /*
 * Define a regex pattern to check the date format

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

334

 */
 $pattern = '/^(\d{4}(-\d{2}){2} (\d{2})(:\d{2}){2})$/';

 /*
 * If a match is found, return TRUE. FALSE otherwise.
 */
 return preg_match($pattern, $date)==1 ? TRUE : FALSE;
 }

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

 private function _adminGeneralOptions() {...}

 private function _adminEntryOptions($id) {...}

}

?>

Returning an Error if the Dates Don’t Validate
Your next step is to modify the processForm() method so it calls the _validDate() method on both the
start and end times for new entries. If the validation fails, simply return an error message.

Add the following bold code to processForm() to implement the validation:

<?php

class Calendar extends DB_Connect
{

 private $_useDate;

 private $_m;

 private $_y;

 private $_daysInMonth;

 private $_startDay;

 public function __construct($dbo=NULL, $useDate=NULL) {...}

 public function buildCalendar() {...}

 public function displayEvent($id) {...}

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

335

 public function displayForm() {...}

 /**
 * Validates the form and saves/edits the event
 *
 * @return mixed TRUE on success, an error message on failure
 */
 public function processForm()
 {
 /*
 * Exit if the action isn't set properly
 */
 if ($_POST['action']!='event_edit')
 {
 return "The method processForm was accessed incorrectly";
 }

 /*
 * Escape data from the form
 */
 $title = htmlentities($_POST['event_title'], ENT_QUOTES);
 $desc = htmlentities($_POST['event_description'], ENT_QUOTES);
 $start = htmlentities($_POST['event_start'], ENT_QUOTES);
 $end = htmlentities($_POST['event_end'], ENT_QUOTES);

 /*
 * If the start or end dates aren't in a valid format, exit
 * the script with an error
 */
 if (!$this->_validDate($start)
 || !$this->_validDate($end))
 {
 return "Invalid date format! Use YYYY-MM-DD HH:MM:SS";
 }

 /*
 * If no event ID passed, create a new event
 */
 if (empty($_POST['event_id']))
 {
 $sql = "INSERT INTO `events`
 (`event_title`, `event_desc`, `event_start`,
 `event_end`)
 VALUES
 (:title, :description, :start, :end)";
 }

 /*
 * Update the event if it's being edited
 */
 else

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

336

 {
 /*
 * Cast the event ID as an integer for security
 */
 $id = (int) $_POST['event_id'];
 $sql = "UPDATE `events`
 SET
 `event_title`=:title,
 `event_desc`=:description,
 `event_start`=:start,
 `event_end`=:end
 WHERE `event_id`=$id";
 }

 /*
 * Execute the create or edit query after binding the data
 */
 try
 {
 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(":title", $title, PDO::PARAM_STR);
 $stmt->bindParam(":description", $desc, PDO::PARAM_STR);
 $stmt->bindParam(":start", $start, PDO::PARAM_STR);
 $stmt->bindParam(":end", $end, PDO::PARAM_STR);
 $stmt->execute();
 $stmt->closeCursor();

 /*
 * Returns the ID of the event
 */
 return $this->db->lastInsertId();
 }
 catch (Exception $e)
 {
 return $e->getMessage();
 }
 }

 public function confirmDelete($id) {...}

 private function _validDate($date) {...}

 private function _loadEventData($id=NULL) {...}

 private function _createEventObj() {...}

 private function _loadEventById($id) {...}

 private function _adminGeneralOptions() {...}

 private function _adminEntryOptions($id) {...}

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

337

}

?>

You can test the validation by entering a bad entry into the form at http://localhost/admin.php (see

Figure 9-22).

Figure 9-22. An entry with bad date values that should fail validation

■ Note You use http://localhost/admin.php because the only reason your server-side validation will be
invoked is if the user has JavaScript disabled. In that case, the modal windows would not function, and the user
would be brought to this form. In situations where JavaScript is enabled, the server-side acts as a double-check
and an additional security measure against mischievous users.

After this form is submitted, the app will simply output the error message and die (see Figure 9-23).
The calendar application is designed for users with JavaScript enabled; you use this approach to prevent
the app from displaying errors.

http://localhost/admin.php
http://localhost/admin.php

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

338

Figure 9-23. The error message displayed when invalid dates are supplied

Adding Client-Side Date Validation
For most users, JavaScript will be enabled. It’s far more convenient as a user to get instant feedback on
the form, so you will add new jQuery functionality to validate date strings on the client side.

Creating a New JavaScript File to Validate the Date String
Because you’re going to continue to work with this script in the next chapter, you should put it in a
separate file in the js folder called valid-date.js. This file will contain a function that is functionally
equivalent to the _validDate() method in the Calendar class.

It will accept a date to validate, check it against the date-matching regex pattern you wrote
previously using match(), and then return true if a match is found or false if match() returns null.

You build this function by inserting the following code into valid-date.js:

// Checks for a valid date string (YYYY-MM-DD HH:MM:SS)
function validDate(date)
{
 // Define the regex pattern to validate the format
 var pattern = /^(\d{4}(-\d{2}){2} (\d{2})(:\d{2}){2})$/;

 // Returns true if the date matches, false if it doesn't
 return date.match(pattern)!=null;
}

■ Note The regex pattern is not enclosed in quotes. If you used quotes, the pattern would be stored as a string
and interpreted accordingly—this would result in the script looking for an exact character match, rather than
interpreting the regex pattern properly.

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

339

Including the New File in the Footer
To use the validDate() function, you’ll need to include the new JavaScript file before init.js, so that the
function is available to be called. Do this by opening footer.inc.php in the common folder and inserting
the following bold code:

 <script type="text/javascript"
 src="http://www.google.com/jsapi"></script>
 <script type="text/javascript">
 google.load("jquery", "1");
 </script>
 <script type="text/javascript"
 src="assets/js/valid-date.js"></script>
 <script type="text/javascript"
 src="assets/js/init.js"></script>
</body>

</html>

Preventing the Form Submission if Validation Fails
Now that validDate() is available in init.js, you need to add date validation before the form can be
submitted. Store the start and end dates in variables (start and end, respectively), then check them using
validDate() before allowing the form to be submitted.

Next, modify the click handler to the Submit button on the form that edits or creates events, and
then trigger an alert with a helpful error message if either date input has an invalid value. You need to
prevent the form from being submitted as well, so the user doesn’t have to repopulate the other form
fields.

You accomplish this by inserting the following bold code into init.js:

// Makes sure the document is ready before executing scripts
jQuery(function($){

var processFile = "assets/inc/ajax.inc.php",
 fx = {...}

$("li a").live("click", function(event){...});

$(".admin-options form,.admin")
 .live("click", function(event){...});

// Edits events without reloading
$(".edit-form input[type=submit]").live("click", function(event){

 // Prevents the default form action from executing
 event.preventDefault();

 // Serializes the form data for use with $.ajax()
 var formData = $(this).parents("form").serialize(),

http://www.google.com/jsapi

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

340

 // Stores the value of the submit button
 submitVal = $(this).val(),

 // Determines if the event should be removed
 remove = false,

 // Saves the start date input string
 start = $(this).siblings("[name=event_start]").val(),

 // Saves the end date input string
 end = $(this).siblings("[name=event_end]").val();

 // If this is the deletion form, appends an action
 if ($(this).attr("name")=="confirm_delete")
 {
 // Adds necessary info to the query string
 formData += "&action=confirm_delete"
 + "&confirm_delete="+submitVal;

 // If the event is really being deleted, sets
 // a flag to remove it from the markup
 if (submitVal=="Yes, Delete It")
 {
 remove = true;
 }
 }

 // If creating/editing an event, checks for valid dates
 if ($(this).siblings("[name=action]").val()=="event_edit")
 {
 if (!validDate(start) || !validDate(end))
 {
 alert("Valid dates only! (YYYY-MM-DD HH:MM:SS)");
 return false;
 }
 }

 // Sends the data to the processing file
 $.ajax({
 type: "POST",
 url: processFile,
 data: formData,
 success: function(data) {
 // If this is a deleted event, removes
 // it from the markup
 if (remove===true)
 {
 fx.removeevent();
 }

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

341

 // Fades out the modal window
 fx.boxout();

 // If this is a new event, adds it to
 // the calendar
 if ($("[name=event_id]").val().length==0
 && remove===false)
 {
 fx.addevent(data, formData);
 }
 },
 error: function(msg) {
 alert(msg);
 }
 });

 });

$(".edit-form a:contains(cancel)")
 .live("click", function(event){...});

});

Now save these changes, load http://localhost/ in your browser, and then create a new event with

bad parameters using the modal window form (see Figure 9-24).

http://localhost

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

342

Figure 9-24. An entry that will fail to validate

If you click the Submit button at this point, the validation will fail, and the app will show an alert box
with the error message about the date format (see Figure 9-25).

CHAPTER 9 ■ PERFORMING FORM VALIDATION WITH REGULAR EXPRESSIONS

343

Figure 9-25. The error message in an alert box after failing validation

After clicking the OK button in the alert box, the user will be able to edit her entry without having to
repopulate any fields.

Summary
In this chapter, you tackled using regular expressions for form validation. The concepts you learned can
be applied to validating any type of data, and they will greatly aid you in making sure the information
supplied in forms is usable by your applications.

In the next chapter, you’ll learn how to extend the jQuery object, both by directly extending the
jQuery core and by developing a custom plugin for jQuery.

C H A P T E R 10

■ ■ ■

345

Extending jQuery

jQuery’s easy-to-use syntax led developers to begin writing scripts to achieve custom effects and other
tasks. To make these scripts configurable and reusable, these developers constructed these scripts as
plugins, or scripts that extend jQuery by adding new methods to the library. In this chapter, you’ll learn
how to add your own plugins to jQuery.

Adding Functions to jQuery
In some cases, it may be desirable to add a function directly to the jQuery object, which means you
would be able to call it like so:

$.yourFunction();

Adding functions to jQuery can help you keep your scripts organized and ensure that your function

calls follow a consistent format. However, it’s important to note that adding a function to jQuery does
not allow you to chain it with a set of selected DOM elements; for this, you must use a method, which
you’ll learn how to do in this chapter.

Adding Your Date Validation Function to jQuery
In your first extending jQuery example, you will add the date validation function you wrote in the last
chapter to the jQuery object. Specifically, you’ll leverage valid-date.js.

Allowing Custom Aliases in jQuery Plugins
One thing you should consider is allowing custom aliases in your jQuery plugins. While this isn’t strictly
necessary, it is strongly encouraged because it can help you keep your plugin from breaking if the $
shortcut is given up by jQuery.noConflict(). Better still, this feature is so simple to implement that it’s
actually a little silly not to include it.

When building a new plugin, you should put the plugin code within a function that is executed
immediately when the script is loaded. At its outset, the script should look like this:

CHAPTER 10 ■ EXTENDING JQUERY

346

(function(){
 // plugin code here...
})();

The second set of parentheses causes the preceding code to be executed immediately as a function,

which is where the custom alias comes in. If you pass the jQuery object to the second set of parentheses
and the $ shortcut to the internal function, then the code will work properly with the $ shortcut, even if
it’s given back to the global namespace using jQuery.noConflict():

(function($){
 // plugin code here...
})(jQuery);

You could use any valid JavaScript variable name in place of the $, and the script would still execute

properly with this method:

(function(custom){
 // Adds a background color to any paragraph
 // element using a custom alias
 custom("p").css("background-color","yellow");
})(jQuery);

Attaching the Function to the jQuery Object
To attach the function to jQuery, you can add the following code to valid-date.js:

(function($){

 // Extends the jQuery object to validate date strings
 $.validDate = function()
 {
 // code here
 };

})(jQuery);

Using this format, you now call the validDate() function like this:

$.validDate();

Allowing Configurable Options
Just as in the original validDate() function, a date string will be passed into the function. However, to
make this function more configurable, you can pass in an object containing configuration options (if
necessary) to modify the regex pattern used to match the date string:

(function($){

 // Extends the jQuery object to validate date strings

CHAPTER 10■ EXTENDING JQUERY

347

 $.validDate = function(date, options)
 {
 // code here
 };

})(jQuery);

The options object will only have one property: the pattern to be used for validation. Because you

want the options object to be optional, you define a default value for the pattern in the function by
inserting the following bold code:

(function($){

 // Extends the jQuery object to validate date strings
 $.validDate = function(date, options)
 {
 // Sets up default values for the method
 var defaults = {
 "pattern" : /^\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}$/
 };
 };

})(jQuery);

Extending Default Options with User-Supplied Options
You can extend the default object using the $.extend() function, which will create a new object by
combining the default options with the user-supplied options. If there are three options available and
the user passes an object with only two of them defined, using $.extend() will only replace the two
properties redefined by the user.

Insert the code shown in bold to extend the default object:

(function($){

 // Extends the jQuery object to validate date strings
 $.validDate = function(date, options)
 {
 // Sets up default values for the method
 var defaults = {
 "pattern" : /^\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}$/
 },

 // Extends the defaults with user-supplied options
 opts = $.extend(defaults, options);
 };

})(jQuery);

CHAPTER 10 ■ EXTENDING JQUERY

348

Performing Validation and Returning a Value
This step is nearly identical to one in the original function, except you access the pattern here through
the opts object:

(function($){

 // Extends the jQuery object to validate date strings
 $.validDate = function(date, options)
 {
 // Sets up default values for the method
 var defaults = {
 "pattern" : /^\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}$/
 },

 // Extends the defaults with user-supplied options
 opts = $.extend(defaults, options);

 // Returns true if a match is found, false otherwise
 return date.match(opts.pattern)!=null;
 };

})(jQuery);

Conforming to jQuery Plugin File Naming Conventions
To officially call a plugin a plugin, you must use the jQuery naming conventions for your plugin files. The
accepted format is jquery.[name of plugin].js—to meet this guideline, change the name of valid-
date.js to jquery.validDate.js.

Modifying the Include Script
Now that the file name has changed, you need to update footer.inc.php to include it. Make the changes
shown in bold to load the correct file:

 <script type="text/javascript"
 src="http://www.google.com/jsapi"></script>
 <script type="text/javascript">
 google.load("jquery", "1");
 </script>
 <script type="text/javascript"
 src="assets/js/jquery.validDate.js"></script>
 <script type="text/javascript"
 src="assets/js/init.js"></script>
</body>

</html>

http://www.google.com/jsapi

CHAPTER 10■ EXTENDING JQUERY

349

Modifying the Initialization Script
Finally, adjust init.js to call the new jQuery function you’ve just added by making the adjustments
shown in bold:

jQuery(function($){

var processFile = "assets/inc/ajax.inc.php",
 fx = {...}

$("li a").live("click", function(event){...});

$(".admin-options form,.admin")
 .live("click", function(event){...});

// Edits events without reloading
$(".edit-form input[type=submit]").live("click", function(event){

 // Prevents the default form action from executing
 event.preventDefault();

 // Serializes the form data for use with $.ajax()
 var formData = $(this).parents("form").serialize(),

 // Stores the value of the submit button
 submitVal = $(this).val(),

 // Determines if the event should be removed
 remove = false,

 // Saves the start date input string
 start = $(this).siblings("[name=event_start]").val(),

 // Saves the end date input string
 end = $(this).siblings("[name=event_end]").val();

 // If this is the deletion form, appends an action
 if ($(this).attr("name")=="confirm_delete")
 {
 // Adds necessary info to the query string
 formData += "&action=confirm_delete"
 + "&confirm_delete="+submitVal;

 // If the event is really being deleted, sets
 // a flag to remove it from the markup
 if (submitVal=="Yes, Delete It")
 {
 remove = true;
 }
 }

CHAPTER 10 ■ EXTENDING JQUERY

350

 // If creating/editing an event, checks for valid dates
 if ($(this).siblings("[name=action]").val()=="event_edit")
 {
 if (!$.validDate(start) || !$.validDate(end))
 {
 alert("Valid dates only! (YYYY-MM-DD HH:MM:SS)");
 return false;
 }
 }

 // Sends the data to the processing file
 $.ajax({
 type: "POST",
 url: processFile,
 data: formData,
 success: function(data) {
 // If this is a deleted event, removes
 // it from the markup
 if (remove===true)
 {
 fx.removeevent();
 }

 // Fades out the modal window
 fx.boxout();

 // If this is a new event, adds it to
 // the calendar
 if ($("[name=event_id]").val().length==0
 && remove===false)
 {
 fx.addevent(data, formData);
 }
 },
 error: function(msg) {
 alert(msg);
 }
 });

 });

$(".edit-form a:contains(cancel)")
 .live("click", function(event){...});

});

After saving the preceding code, you can reload http://localhost/ and try to submit a new event

with bad date values. The result is identical to the result obtained when using the original validDate()
function.

http://localhost

CHAPTER 10■ EXTENDING JQUERY

351

Adding Methods to jQuery
To add a chainable method to the jQuery object, you have to attach it to the fn object of jQuery. This
allows you to call the method on a set of selected elements:

$(".class").yourPlugin();

■ Note The fn object of jQuery is actually just an alias for the jQuery object’s prototype object. Modifying the
prototype of an object will affect all future instances of that object, rather than just the current instance. For more
information on this, check out the brief and simple explanation of the prototype object in JavaScript at
http://www.javascriptkit.com/javatutors/proto.shtml.

Building Your Plugin
The plugin you’ll build in this section will rely on a simple method to enlarge the event titles when a user
hovers over them, and then return them to their original size when the user moves his mouse off the
title.

This plugin will be called dateZoom, and it will allow the user to configure the size, speed, and easing
equation used for the animation.

Creating a Properly Named Plugin File
Your first order of business when creating this plugin is to give it a name. Create a new file in the js
folder called jquery.dateZoom.js and insert the custom alias function:

(function($){
 // plugin code here
})(jQuery);

Inside this function, attach the new method to the fn object by inserting the following bold code:

(function($){

 // A plugin that enlarges the text of an element when moused
 // over, then returns it to its original size on mouse out
 $.fn.dateZoom = function(options)
 {
 // code here
 };

})(jQuery);

http://www.javascriptkit.com/javatutors/proto.shtml

CHAPTER 10 ■ EXTENDING JQUERY

352

Providing Publicly Accessible Default Options
In your validDate() plugin, the function’s default options are stored in a private object. This can be
undesirable, especially in instances where a user might apply the plugin method to multiple sets of
elements and then want to modify the defaults for all instances.

To make default options publicly accessible, you can store them in the dateZoom namespace. For
your dateZoom plugin, create a publicly accessible defaults object that contains four custom properties:

• fontsize: The size to which the font will expand. Set this to 110% by default.

• easing: The easing function to use for the animation. Set this to swing by default.

• duration: The number of milliseconds the animation should last. Set this to 600 by
default.

• callback: A function that fires upon completion of the animation. Set this to null
by default.

Now add the default options to the dateZoom plugin by inserting the following bold code:

(function($){

 // A plugin that enlarges the text of an element when moused
 // over, then returns it to its original size on mouse out
 $.fn.dateZoom = function(options)
 {
 // code here
 };

 // Defines default values for the plugin
 $.fn.dateZoom.defaults = {
 "fontsize" : "110%",
 "easing" : "swing",
 "duration" : "600",
 "callback" : null
 };

})(jQuery);

At this point, a user can change the defaults for all calls to the dateZoom plugin using syntax

something like this:

$.fn.dateZoom.defaults.fontsize = "120%";

To override default options, a user can pass an object with new values for one or more of the default

options, as in the validDate plugin. You can use $.extend() to create a new object that contains values
for the current invocation of the plugin when it is created.

The following bold code adds this functionality to the dateZoom plugin:

(function($){

 // A plugin that enlarges the text of an element when moused

CHAPTER 10■ EXTENDING JQUERY

353

 // over, then returns it to its original size on mouse out
 $.fn.dateZoom = function(options)
 {
 // Only overwrites values that were explicitly passed by
 // the user in options
 var opts = $.extend($.fn.dateZoom.defaults, options);

 // more code here
 };

 // Defines default values for the plugin
 $.fn.dateZoom.defaults = {
 "fontsize" : "110%",
 "easing" : "swing",
 "duration" : "600",
 "callback" : null
 };

})(jQuery);

Maintaining Chainability
To keep plugin methods chainable, the method must return the modified jQuery object. Fortunately,
this is easy to accomplish with jQuery: all you need to do is run the .each() method on the this object to
iterate over each selected element, and then return the this object.

In the dateZoom plugin, you can make your method chainable by inserting the code shown in bold:

(function($){

 // A plugin that enlarges the text of an element when moused
 // over, then returns it to its original size on mouse out
 $.fn.dateZoom = function(options)
 {
 // Only overwrites values that were explicitly passed by
 // the user in options
 var opts = $.extend($.fn.dateZoom.defaults, options);

 // Loops through each matched element and returns the
 // modified jQuery object to maintain chainability
 return this.each(function(){
 // more code here
 });
 };

 // Defines default values for the plugin
 $.fn.dateZoom.defaults = {
 "fontsize" : "110%",
 "easing" : "swing",
 "duration" : "600",
 "callback" : null

CHAPTER 10 ■ EXTENDING JQUERY

354

 };

})(jQuery);

Creating a Publicly Accessible Helper Method
To keep your plugin code clean and organized, you will place the actual animation of the elements in a
helper method called zoom.

This method, like the defaults object, will be publicly accessible under the dateZoom namespace.
Making this method public means that a user can potentially redefine the method before calling the
plugin or even call the method outside of the plugin, if he so desires.

You create the zoom method by inserting the following bold code into the dateZoom plugin:

(function($){

 // A plugin that enlarges the text of an element when moused
 // over, then returns it to its original size on mouse out
 $.fn.dateZoom = function(options)
 {
 // Only overwrites values that were explicitly passed by
 // the user in options
 var opts = $.extend($.fn.dateZoom.defaults, options);

 // Loops through each matched element and returns the
 // modified jQuery object to maintain chainability
 return this.each(function(){
 // more code here
 });
 };

 // Defines default values for the plugin
 $.fn.dateZoom.defaults = {
 "fontsize" : "110%",
 "easing" : "swing",
 "duration" : "600",
 "callback" : null
 };

 // Defines a utility function that is available outside of the
 // plugin if a user is so inclined to use it
 $.fn.dateZoom.zoom = function(element, size, opts)
 {
 // zoom the elements
 };

})(jQuery);

This method accepts the element to animate, the size to which it should be animated, and an object

containing options.

CHAPTER 10■ EXTENDING JQUERY

355

■ Note You’re keeping the size separate from the rest of the options because the element’s original font size will
be used for returning the element to its original state and that value is not available in the options object.

Inside this method, you will use the .animate(), .dequeue(), and .clearQueue() methods to animate
the object and prevent animation queue buildup; add the code shown in bold to accomplish this:

(function($){

 // A plugin that enlarges the text of an element when moused
 // over, then returns it to its original size on mouse out
 $.fn.dateZoom = function(options)
 {
 // Only overwrites values that were explicitly passed by
 // the user in options
 var opts = $.extend($.fn.dateZoom.defaults, options);

 // Loops through each matched element and returns the
 // modified jQuery object to maintain chainability
 return this.each(function(){
 // more code here
 });
 };

 // Defines default values for the plugin
 $.fn.dateZoom.defaults = {
 "fontsize" : "110%",
 "easing" : "swing",
 "duration" : "600",
 "callback" : null
 };

 // Defines a utility function that is available outside of the
 // plugin if a user is so inclined to use it
 $.fn.dateZoom.zoom = function(element, size, opts)
 {
 $(element).animate({
 "font-size" : size
 },{
 "duration" : opts.duration,
 "easing" : opts.easing,
 "complete" : opts.callback
 })
 .dequeue() // Prevents jumpy animation
 .clearQueue(); // Ensures only one animation occurs
 };

})(jQuery);

CHAPTER 10 ■ EXTENDING JQUERY

356

■ Note The .dequeue() method takes the current animation out of the animation queue, preventing the
animation from jumping to the end when the queue is cleared with .clearQueue(). Allowing the queue to build up
can cause the animated element to look jumpy or to perform the animation many times in rapid succession, which
is definitely an undesirable effect.

Modifying Each Matched Element
Because the .each() method accepts a callback, you can easily modify each matched element in the
jQuery object being processed. For the dateZoom plugin, you’ll add hover event handlers to each selected
element.

When a user hovers her mouse over an element to which dateZoom has been applied, the zoom
method will run. This method relies on the fontsize property of the defaults object to enlarge the text
appropriately. When the user stops hovering, the original text size will be passed to zoom, and the
element’s text will return to its original size.

To store the original size, use the .css() method and place the original font size in a private
variable.

You use the .hover() method to implement this functionality by inserting the following bold code
into the dateZoom plugin:

(function($){

 // A plugin that enlarges the text of an element when moused
 // over, then returns it to its original size on mouse out
 $.fn.dateZoom = function(options)
 {
 // Only overwrites values that were explicitly passed by
 // the user in options
 var opts = $.extend($.fn.dateZoom.defaults, options);

 // Loops through each matched element and returns the
 // modified jQuery object to maintain chainability
 return this.each(function(){
 // Stores the original font size of the element
 var originalsize = $(this).css("font-size");

 // Binds functions to the hover event. The first is
 // triggered when the user hovers over the element, and
 // the second when the user stops hovering
 $(this).hover(function(){
 $.fn.dateZoom.zoom(this, opts.fontsize, opts);
 },
 function(){
 $.fn.dateZoom.zoom(this, originalsize, opts);
 });
 });
 };

CHAPTER 10■ EXTENDING JQUERY

357

 // Defines default values for the plugin
 $.fn.dateZoom.defaults = {
 "fontsize" : "110%",
 "easing" : "swing",
 "duration" : "600",
 "callback" : null
 };

 // Defines a utility function that is available outside of the
 // plugin if a user is so inclined to use it
 $.fn.dateZoom.zoom = function(element, size, opts)
 {
 $(element).animate({
 "font-size" : size
 },{
 "duration" : opts.duration,
 "easing" : opts.easing,
 "complete" : opts.callback
 })
 .dequeue() // Prevents jumpy animation
 .clearQueue(); // Ensures only one animation occurs
 };

})(jQuery);

Implementing Your Plugin
At this point, your plugin is ready to implement. All that remains is to include the file and select a set of
elements to run it on.

Including the Plugin File
To include the plugin file, you need to modify footer.inc.php and add a new script tag. As with the
validDate plugin, the dateZoom plugin needs to be included before init.js, so that the method is
available to be called:

 <script type="text/javascript"
 src="http://www.google.com/jsapi"></script>
 <script type="text/javascript">
 google.load("jquery", "1");
 </script>
 <script type="text/javascript"
 src="assets/js/jquery.validDate.js"></script>
 <script type="text/javascript"
 src="assets/js/jquery.dateZoom.js"></script>
 <script type="text/javascript"
 src="assets/js/init.js"></script>

http://www.google.com/jsapi

CHAPTER 10 ■ EXTENDING JQUERY

358

</body>

</html>

Initializing the Plugin on a Set of Elements
The plugin is now included in the application, so you can call the .dateZoom() method on a set of
elements. The next set of changes requires that you modify init.js, so open that file now.

Begin by changing the default fontsize value to 13px, and then add the .dateZoom() method to the
chain of methods on the set of elements selected with the "li a" string. As already indicated, you
implement these changes by adding modifying init.js, as shown in the bold code that follows:

jQuery(function($){

var processFile = "assets/inc/ajax.inc.php",
 fx = {...}

// Set a default font-size value for dateZoom
$.fn.dateZoom.defaults.fontsize = "13px";

// Pulls up events in a modal window and attaches a zoom effect
$("li a")
 .dateZoom()
 .live("click", function(event){

 // Stops the link from loading view.php
 event.preventDefault();

 // Adds an "active" class to the link
 $(this).addClass("active");

 // Gets the query string from the link href
 var data = $(this)
 .attr("href")
 .replace(/.+?\?(.*)$/, "$1"),

 // Checks if the modal window exists and
 // selects it, or creates a new one
 modal = fx.checkmodal();

 // Creates a button to close the window
 $("<a>")
 .attr("href", "#")
 .addClass("modal-close-btn")
 .html("×")
 .click(function(event){
 // Removes event
 fx.boxout(event);
 })
 .appendTo(modal);

CHAPTER 10■ EXTENDING JQUERY

359

 // Loads the event data from the DB
 $.ajax({
 type: "POST",
 url: processFile,
 data: "action=event_view&"+data,
 success: function(data){
 // Displays event data
 fx.boxin(data, modal);
 },
 error: function(msg) {
 alert(msg);
 }
 });

 });

$(".admin-options form,.admin")
 .live("click", function(event){...});

// Edits events without reloading
$(".edit-form input[type=submit]")
 .live("click", function(event){...});

$(".edit-form a:contains(cancel)")
 .live("click", function(event){...});

});

Save these changes, reload http://localhost/ in your browser, and then hover over an event title to

see the dateZoom plugin in action (see Figure 10-1).

http://localhost

CHAPTER 10 ■ EXTENDING JQUERY

360

Figure 10-1. The event title enlarges when hovered over

Summary
You should now feel comfortable building custom plugins in jQuery, both as chainable methods and as
functions. This chapter is fairly short, but that brevity stands as a testament to the ease with which you
can extend the jQuery library with your own custom scripts.

Congratulations! You’ve now learned how to use PHP and jQuery together to build custom
applications with a desktop app-like feel. Now you’re ready to bring all your great ideas to life on the
Web!

361

Index

■ Special Characters
#id selector, 19

$() function, 9–10

$ shortcut, 345

$_daysInMonth property, 129

$_m property, 129, 134

$_POST superglobal, 167, 170

$_saltLength property, 202

$_SESSION superglobal, 170

$_startDay property, 129

$_useDate property, 129, 134

$_y property, 129, 134

$actions array, 221

$admin variable, 187–188

$.ajax() method, 78–79, 247–248, 250–251, 257–
258, 264, 271

$.ajaxSetup() method, 80–81

$C array, 131–132

$count static property, 108

$css_files array, 175, 239

$css_files variable, 158, 188, 195

$db property, 126

$description property, Event Class, 140

$end property, Event Class, 140

$.extend() function, 347, 352

$.get() method, 82–83

$.getJSON() method, 83

$.getScript() method, 83

$id property, Event Class, 140

$id variable, 195

$markup variable, 195

$page_title variable, 158, 195

$.post() method, 82–83

$start property, Event Class, 140

$title property, Event Class, 140

$user variable, 205

__autoload() function, 117

__CLASS__ magic constant, 94

__construct() magic method, 93

__destruct() magic method, 94

__toString() method, 96–97

_adminEntryOptions() method, 185, 187, 191,
223

_adminEventOptions() method, 226

_adminGeneralOptions() method, 181, 183,
218, 223–224

_createEventObj() method, 142, 151, 160

_getSaltedHash() method, 207, 210

_loadEventById() method, 160, 162

_loadEventData() method, 136, 139, 142, 160–
161

_validDate() method, 333–334, 338

■ INDEX

362

■ A
active class, 240, 255, 304

Add a New Event button, 264, 267, 269–270, 273

.add() method, 34

.addClass() method, 59, 240

Admin button, 185

Admin class, 209–210, 213, 220

admin.css stylesheet, 172–173, 175, 183, 188

-adminGeneralOptions() method, 218

admin.php file, 121, 171, 175, 181, 190

.after() method, 45

AJAX (Asynchronous JavaScript and XML)

methods of jQuery for

$.ajax(), 78–79

$.ajaxSetup(), 80–81

$.get(), 82–83

$.getJSON(), 83

$.getScript(), 83

$.post(), 82–83

.load(), 83

retrieve and display data in modal window
with

file to handle AJAX requests, 248–250

loading event data, 250–252

overview, 247

ajax.css file, 238, 253

ajax.inc.php file, 248, 265, 271–272, 293, 302

alternation, regular expressions, 324

ampersands, 275

.andSelf() method, 35

animation, methods of jQuery for

.animate() method, 67–70

.delay() method, 70

.fadeIn() method, 66–67

.fadeOut() method, 66–67

.fadeTo() method, 66–67

.hide() method, 65–66

.show() method, 65–66

.slideDown() method, 67

.slideToggle() method, 67

.slideUp() method, 67

.stop() method, 70

.append() method, 40–44, 251

.appendTo() method, 44–45

Applications folder, 7

arrays, of event objects, 139

assets folder, 121

Asynchronous JavaScript and XML. See AJAX

.attr() method, 53–54, 242, 280, 291

attribute filters, in jQuery for DOM elements,
19–20

■ B
backreferences, regular expressions, 318–319

basic filters, in jQuery for DOM elements, 16–17

basic selectors, in jQuery for DOM elements

by class name, 12

combining selectors, 13

by ID, 12–13

by tag type, 11

using multiple selectors, 13

.before() method, 45

.bind() method, 74–75

body tag, 9, 14, 158, 236, 244

Browse tab, 213

buildCalendar() method, 143, 145, 147, 151,
158, 183, 279

:button filter, 22

■ INDEX

363

■ C
Calendar app

JavaScript initialization file for, 237

overview, 236

stylesheet for elements created by jQuery,
238–239

Calendar class, 119, 131, 134, 162, 171, 179, 185,
190, 192, 226

calendar editing with AJAX and jQuery

adding events without refreshing

appending event to calendar, 283–285

current month events only, 282

deserializing form data, 274–278

getting new event ID, 286–289

modifying Calendar class with ID, 279

overview, 273

timezone inconsistencies, 281

using Date object, 279–282

confirming deletion in modal window

displaying confirmation dialog, 298–300

event handler for deletion, 301–307

remove event from calendar after, 304–
307

editing events in modal window

determining form action, 291

new events only added to calendar, 296–
298

overview, 290

remove from modal window, 294–295

storing event ID, 292–293

event creation form

adding AJAX call to load, 264

Cancel button behavior, 268–269

modifying AJAX processing file to load
form, 266–267

overview, 263

saving new events in database

modifying AJAX processing file to handle
submissions, 272–273

overview, 269

serializing form data, 270

submitting serialized form data to
processing file, 271

Calendar object, 195, 265

callback property, defaults object, 352

callProtected() method, 107

Cancel button, behavior in event creation form,
268–269

Cancel link, 269

Cascading Style Sheets. See CSS, jQuery
methods for

cdata variable, 280

chainability, maintaining in plugins, 353

chainable, methods of jQuery are, 25

character classes, regular expressions

any character except, 322

overview, 320–321

shorthand for, 323

:checkbox filter, 22

checked form elements, form filters in jQuery
for DOM elements, 23

checked state, 23

checkmodal, 244

child elements, hierarchy selectors in jQuery for
DOM elements, 14

child filters, in jQuery for DOM elements

even or odd parameters or parameters by
index or equation, 20

first or last child elements, 20–21

.children() method, 29

class folder, 121, 127, 140, 202

class keyword, 88

class name, basic selectors in jQuery for DOM
elements, 12

.class selector, 19

class.admin.inc.php file, 202

■ INDEX

364

class.calendar.inc.php file, 127, 333

class.db_connect.inc.php file, 125–126

.clearQueue() method, 355–356

click event, 240, 245, 263, 290

click handler, 257, 297, 339

client-side date validation, 338–343

Close button, 252–254, 262, 294

.closest() method, 30

config folder, 121, 131

configurable options, allowing, 346–347

confirm_delete attribute, 301

Confirmation button, 192

confirmation, creating method to require, 192

confirmation form, 195

confirmDelete() method, 192, 195–196

confirmdelete.php file, 121, 191, 195–196, 229

Console panel, Firebug dialog box, 11

Console tab, Firebug dialog box, 11

constructors, events calendar

checking database connection, 130–132

creating index file, 133

creating initialization file, 132–133

overview, 129

setting properties, 134–136

:contains() method, 17–18

content div, 158, 164

content filters, in jQuery for DOM elements

elements that are empty, 18

elements that are parents, 18

elements that contain certain element, 18

elements that contain certain text, 17

.contents() method, 35

Content-Type meta tag, 158

core folder, 121, 132

Create a New Event button, 270, 273

credentials, file to store, 131–132

CSRF (cross-site request forgeries), 169

CSS (Cascading Style Sheets), jQuery methods
for

.addClass() method, 59

.attr() method, 53–54

.css() method, 55

.data() method, 58–59

.hasClass() method, 60

.height() method, 61

.html() method, 56–57

.innerHeight() method, 62

.innerWidth() method, 62

.outerHeight() method, 62

.outerWidth() method, 62

.removeAttr() method, 54

.removeClass() method, 59

.text() method, 56–57

.toggleClass() method, 59–60

.val() method, 57–58

.width() method, 61

css folder, 121, 155, 172, 238

.css() method, 55, 356

custom aliases, allowing in jQuery plugins, 345–
346

■ D
.data() method, 58–59

data variable, 242, 245, 284

database

checking connection to

file to store credentials, 131–132

overview, 130

for events calendar

connecting to with class, 125–126

creating, 124–125

structure for, 119

■ INDEX

365

saving new calendar events in

adding button to create new events,
181–184

adding file to call processing method,
179–181

overview, 176–178

saving new events in

modifying AJAX processing file to handle
submissions, 271, 273

overview, 269

serializing form data, 270–271

submitting serialized form data to
processing file, 271

table setup for password protection, 199

Date object, 279–282

date validation, function for, 345–348

date variable, 280

.dateZoom() method, 358

dateZoom namespace, 351, 354

dateZoom plugin, 351–354, 356–357, 359

DB_Connect class, 127, 130

DB_Connect constructor, 131

DB_Connect object, 125

db-cred.inc.php file, 131

decode, URL-encoded characters in form
values, 276–277

decodeURIComponent() method, 276

default action, preventing, 241

.delay() method, 70

Delete button, 190, 192, 197

Delete It button, 305–306

Delete This Event button, 291, 298, 300

deleting calendar events

file to display confirmation form, 195–198

generating delete button, 191

method to require confirmation, 192

overview, 190

.dequeue() method, 355–356

descendant elements, hierarchy selectors in
jQuery for DOM elements, 13–14

deserializing, form data

decode URL-encoded characters in form
values, 276–278

overview, 274–275

.detach() method, 52–53

development environment, modifications to for
events calendar

for local development, 122–123

overview, 122

for remote development, 124

.die() method, 75–76

:disabled filter, 23

disabled form elements, form filters in jQuery
for DOM elements, 23

displayEvent() method, 162, 164, 187

displayForm() method, 167, 171, 266

DOCTYPE declaration, 158

Document Object Model (DOM) elements

creating, 38–39

methods for traversing

.add() method, 34

.andSelf() method, 35

.children() method, 29

.closest() method, 30

.contents() method, 35

.end() method, 36

.eq() method, 26–27

.filter() method, 27

.find() method, 30

.first() method, 27

.has() method, 28

.is() method, 28

.last() method, 27

.next() method, 30–31

.nextAll() method, 31

.nextUntil() method, 31–32

■ INDEX

366

.not() method, 27

.parent() method, 33

.parents() method, 33

.parentsUntil() method, 34

.prev() method, 32

.prevAll() method, 32

.prevUntil() method, 32

.siblings() method, 32

.slice() method, 28–29

methods to insert new elements into

.after() method, 45

.append() method, 40–44

.appendTo() method, 44–45

.before() method, 45

.detach() method, 52–53

.insertAfter() method, 45–46

.insertBefore() method, 45–46

.prepend() method, 40–44

.prependTo() method, 44–45

.remove() method, 52–53

.unwrap() method, 48

.wrap() method, 46–47

.wrapAll() method, 49–50

.wrapInner() method, 51

selecting in jQuery

attribute filters, 19–20

basic filters, 15–17

basic selectors, 11–13

child filters, 20–21

content filters, 17–18

form filters, 21–23

hierarchy selectors, 13–15

overview, 10

visibility filters, 19

DocumentRoot directive, 122

DOM elements. See Document Object Model
(DOM) elements

don't repeat yourself (DRY), 87

do...while loop, 108

DRY (don't repeat yourself), 87

duration property, defaults object, 352

■ E
.each() method, 63–64, 353, 356

easing property, 352

Edit button, 185, 189–190

Edit This Event button, 291, 295

edit-form class, 264, 268–269

effects, methods of jQuery for

.animate() method, 67–70

.delay() method, 70

.fadeIn() method, 66–67

.fadeOut() method, 66–67

.fadeTo() method, 66–67

.hide() method, 65–66

.show() method, 65–66

.slideDown() method, 67

.slideToggle() method, 67

.slideUp() method, 67

.stop() method, 70

 tags, 313–314

empty elements, content filters in jQuery for
DOM elements, 18

:empty filter, 18

:enabled filter, 23

enabled form elements, form filters in jQuery
for DOM elements, 23

.end() method, 36, 294

end of string, regular expressions, 324

end variable, 339

entry object, 275

entry variable, 278

entry.event_start value, 280

■ INDEX

367

:eq() method, 17, 20, 26–27

equals sign, 275

ereg_replace() function, 313

.error() method, 71

:even filter, 16, 20

even or odd elements, 16

Event class, 140

event creation form

adding AJAX call to load, 264

Cancel button behavior, 268–269

modifying AJAX processing file to load form,
265, 267

overview, 263

event handling, methods of jQuery for, 71–77

.bind() method, 74–75

browser events, 71–72

.die() method, 75–76

.error() method, 71

handling document loading events, 72–73

handling event attachment, 73–77

.live() method, 75–76

.one() method, 76

.ready() method, 72–73

.scroll() method, 72

shortcut event methods, 77

.toggle() method, 76–77

.trigger() method, 77

.unbind() method, 75

.unload() method, 73

event ID

getting new, 286–289

storing, 292–293

Event object, 160, 291

event_desc property, 119

event_edit setting, 264

event_end property, 119

event_id property, 119

event_start property, 119

event_title property, 119

event.preventDefault() method, 269

events array, 151

events calendar

class

adding properties, 127–129

connecting to database with, 125–126

creating wrapper, 127

map of, 119

constructor

checking database connection, 130–132

creating index file, 133

creating initialization file, 132–133

overview, 129

setting properties, 134–136

database

connecting to with class, 125–126

creating, 124–125

structure for, 119

development environment modifications

for local development, 122–123

for remote development, 124

displaying in HTML

adding files to index, 158–159

building calendar, 146–150

displaying events in calendar, 151–154

formatting calendar, 154–157

full event display file, 164–166

header and footer for, 158

index file modifications, 145–159

method to format single event data,
160–162

method to generate markup, 162

overview, 143–144

folder structure for, 120–121

loading events data

■ INDEX

368

array of event objects, 139

Event class, 140

method to store event objects in array,
142–143

overview, 136–138

extending jQuery, adding functions to

allowing configurable options, 346–347

allowing custom aliases in jQuery plugins,
345–346

attaching function to jQuery object, 346

date validation function, 345–348

include script modifications, 348

initialization script modifications, 348–350

overview, 345

plugin creation, 351–356

plugin file naming conventions, 348

plugin implementation, 357–360

user-supplied options, 347

validation and returning value, 347

extends keyword, 99

■ F
fade in, adding effect to modal window, 257

fade out, adding effect to modal window, 255–
256

.fadeIn() method, 66–67, 257

.fadeOut() method, 66–67, 255

.fadeTo() method, 66–67

:file filter, 22

fill class, 146

.filter() method, 27

filters, for selecting DOM elements in jQuery

attribute, 19–20

basic, 15–17

child, 20–21

content, 17–18

form, 21–23

visibility, 19

.find() method, 30

Firebug, 5–6, 11, 236–237

: first filter, 16

.first() method, 27

first or last elements

basic filters in jQuery for DOM elements, 16

child filters in jQuery for DOM elements, 21

:first-child filter, 20

folder structure, for events calendar, 120–121

fontsize property, 352, 356, 358

foo class, 11–13, 15, 19–20

footer, displaying events calendar in HTML, 158

footer.inc.php file, 158, 237, 339, 348, 357

form action, determining, 291

form data

deserializing

decode URL-encoded characters in form
values, 276–278

overview, 274–275

serializing, 270–271

submitting serialized to processing file, 271

form filters, in jQuery for DOM elements

checked or selected form elements, 23

enabled or disabled form elements, 23

by form element type, 22

form validation

client-side date validation

including file in footer, 338–339

preventing form submission if fails, 339–
342

regex pattern to validate dates, 338

with regular expressions

alternation, 324

backreferences, 318–319

basic syntax, 311–315

■ INDEX

369

beginning of string, 324

character classes, 320–323

end of string, 324

examples, 326–327

optional items, 325

pattern modifiers, 316–317

vs. regular string replacement, 314–315

repetition operators, 323–324

replacing text with, 313–314

word boundaries, 323

server-side date validation

adding method to Calendar class, 333

regex pattern to validate dates, 328–333

returning error if does not validate, 334–
337

form variable, 264

forms. See also form validation

to create or edit calendar events

adding stylesheet for administrative
features, 172–175

adding token to, 169–170

creating file to display, 171–172

overview, 167–168

edit controls to full calendar event view

admin stylesheet to full event view, 188–
190

full event display to show admin
controls, 187

overview, 185–186

login, for password protection, 200–201

submission handling

to log out, 221–222

to login, 213–218

forward slashes, 242

functions, adding to jQuery

allowing configurable options, 346–347

allowing custom aliases in jQuery plugins,
345–346

attaching function to jQuery object, 346

date validation function, 345–348

include script modifications, 348

initialization script modifications, 348–350

plugin file naming conventions, 348

user-supplied options, 347

validation and returning value, 347

fx object literal, 243, 255, 257, 274, 304

fx.addevent() method, 278, 280, 284, 297, 305

fx.boxin() method, 259, 264

fx.boxout() method, 257, 261, 268, 271

fx.deserialize, 275–278

fx.initModal() method, 245, 261, 264, 294

fx.removeevent() method, 305

fx.urldecode, 277–278

■ G
.getDay() method, 282

getProperty() method, 98, 104–105, 107

.getTimezoneOffset() method, 281

global namespace, 346

■ H
H2 element, 143, 279–280

:has() filter, 18, 28

.hasClass() method, 60

hashing passwords, 207

head section, 158

header, displaying events calendar in HTML,
158

header() function, 196

header key, 250

header.inc.php file, 158

.height() method, 61

:hidden filter, 19

■ INDEX

370

.hide() method, 65–66, 261

hierarchy selectors, in jQuery for DOM
elements

child elements, 14

descendant elements, 13–14

next elements, 14–15

sibling elements, 15

hover event handlers, 356

.hover() method, 356

href attribute, 240–241, 253, 283

href value, 242

htdocs folder, 8

HTML (HyperText Markup Language),
displaying events calendar in

adding files to index, 158–159

building calendar, 146–150

displaying events in calendar, 151–154

formatting calendar, 154–157

full event display file, 164–166

header and footer for, 158

index file modifications, 145–159

method to format single event data, 160–162

method to generate markup, 162

overview, 143–144

.html() method, 56–57

html tag, 158

htmlentities() method, 203

httpd.conf file, 122–123

HyperText Markup Language. See HTML

■ I
ID, basic selectors in jQuery for DOM elements,

12–13

id variable, 293

if...elseif block, 179

:image filter, 22

inc folder, 121, 248

include script, adding functions to jQuery, 348

index file

creating for events calendar constructor,
133

modifications to, displaying events calendar
in HTML, 145–159

index.html page, 8, 21–22

index.php file, 121, 123, 133, 145, 183, 195, 215,
239

inheritance, of classes

overwriting inherited properties and
methods, 100–101

preserving original method functionality
while overwriting methods, 102–103

initialization file, creating for events calendar
constructor, 132–133

initialization script, adding functions to jQuery,
348–350

init.inc.php file, 132

init.js file, 237, 243, 253, 263–264, 269–270, 339,
348, 357

.innerHeight() method, 62

.innerWidth() method, 62

:input filter, 22

INSERT statement, 176

.insertAfter() method, 45–46

.insertBefore() method, 45–46

.is() method, 28

■ J
JavaScript

initialization file for Calendar app, 237

vs. jQuery, 3–4

understanding libraries, 3–4

jQuery

attribute filters in, 19–20

basic filters in, 16–17

■ INDEX

371

basic selectors in

by class name, 12

combining selectors, 13

by ID, 12–13

by tag type, 11

using multiple selectors, 13

benefits of using, 4

child filters in, 20–21

content filters in

elements that are empty, 18

elements that are parents, 18

elements that contain certain element,
18

elements that contain certain text, 17

form filters in

checked or selected form elements, 23

enabled or disabled form elements, 23

by form element type, 22

hierarchy selectors in

child elements, 14

descendant elements, 13–14

next elements, 14–15

sibling elements, 15

history of, 4

including in web pages, 7–8

vs. JavaScript, 3–4

jQuery function ($), 9

overview, 3

selecting DOM elements

attribute filters, 19–20

basic filters, 15–17

basic selectors, 11–13

child filters, 20–21

content filters, 17–18

form filters, 21–23

hierarchy selectors, 13–15

overview, 10

visibility filters, 19

setting up test file, 8–9

testing environment

installing Firebug, 5

installing Firefox, 5

overview, 4

visibility filters in, 19

jquery.dateZoom.js file, 351

jQuery.noConflict() method, 10, 345–346

jquery.validDate.js file, 348

js folder, 121, 338, 351

■ K
key variable, 275

■ L
:last filter, 16

.last() method, 27

last or first elements

basic filters in jQuery for DOM elements, 16

child filters in jQuery for DOM elements,
20–21

:last-child filter, 20–21

lastInsertId() method, 287

length property, 244

LIMIT 1 clause, 161

.live() method, 75–76, 240, 268–269

.load() method, 83

Log In button, 218

Log Out button, 222–223

logging out, password protection setup

button for, 218–219

form submission handling, 221–222

method to process, 220

overview, 218

■ INDEX

372

login credentials class

defining, 202

form submission handling, 213–218

method to check, 203–213

method to create salted hashes, 207–209

overview, 202

test method for salted hashes, 210–212

user to test administrative access, 212–213

login form, for password protection, 200–201

login.php page, 200

■ M
maintenance, easier with OOP approach, 117–

118

match() method, 338

methods

adding to jQuery

overview, 351

plugin creation, 351–356

plugin implementation, 357–360

defining class

constructors, 93–96

converting to string, 96–98

overview, 90–92

visibility of

private, 107–108

public, 103–106

static, 108–110

methods of jQuery

AJAX controls

$.ajax() method, 78–79

$.ajaxSetup() method, 80–81

$.get() method, 82–83

$.getJSON() method, 83

$.getScript() method, 83

$.post() method, 82–83

.load() method, 83

animation and effects

.animate() method, 67–70

.delay() method, 70

.fadeIn() method, 66–67

.fadeOut() method, 66–67

.fadeTo() method, 66–67

.hide() method, 65–66

.show() method, 65–66

.slideDown() method, 67

.slideToggle() method, 67

.slideUp() method, 67

.stop() method, 70

are chainable, 25

creating DOM elements, 38–39

CSS and attributes

.addClass() method, 59

.attr() method, 53–54

.css() method, 55

.data() method, 58–59

.hasClass() method, 60

.height() method, 61

.html() method, 56–57

.innerHeight() method, 62

.innerWidth() method, 62

.outerHeight() method, 62

.outerWidth() method, 62

.removeAttr() method, 54

.removeClass() method, 59

.text() method, 56–57

.toggleClass() method, 59–60

.val() method, 57–58

.width() method, 61

event handling

.bind() method, 74–75

browser events, 71–72

■ INDEX

373

.die() method, 75–76

.error() method, 71

handling document loading events, 72–
73

handling event attachment, 73–78

.live() method, 75–76

.one() method, 76

.ready() method, 72–73

.scroll() method, 72

shortcut event methods, 77

.toggle() method, 76–77

.trigger() method, 77

.unbind() method, 75

.unload() method, 73

inserting new elements into DOM

.after() method, 45

.append() method, 40–44

.appendTo() method, 44–45

.before() method, 45

.detach() method, 52–53

.insertAfter() method, 45–46

.insertBefore() method, 45–46

overview, 39

.prepend() method, 40–44

.prependTo() method, 44–45

.remove() method, 52–53

.unwrap() method, 48

.wrap() method, 46–47

.wrapAll() method, 49–50

.wrapInner() method, 51

overview, 25

result sets, 62–64

traversing DOM elements

.add() method, 34

.andSelf() method, 35

.children() method, 29

.closest() method, 30

.contents() method, 35

.end() method, 36

.eq() method, 26–27

.filter() method, 27

.find() method, 30

.first() method, 27

.has() method, 28

.is() method, 28

.last() method, 27

.next() method, 30–31

.nextAll() method, 31

.nextUntil() method, 31–32

.not() method, 27

.parent() method, 33

.parents() method, 33

.parentsUntil() method, 34

.prev() method, 32

.prevAll() method, 32

.prevUntil() method, 32

.siblings() method, 32

.slice() method, 28–29

modal window

confirming deletion in

displaying confirmation dialog, 298–300

event handler for deletion, 301–307

overview, 298

remove event from calendar after, 304–
307

editing events in

determining form action, 291

new events only added to calendar, 296–
298

overview, 290

remove from modal window, 294–295

storing event ID, 292–293

for event data

adding active class, 241

■ INDEX

374

adding effects to, 254–262

binding function to click event, 240

Close button, 253–254

creating, 243–245

extracting query string with regular
expressions, 241–243

overview, 240

preventing default action, 240–241

retrieve and display with AJAX, 247–252

modal-overlay class, 257

MyClass class, 89, 91, 93–94, 96, 99, 104, 107–
108

MyClass instance, 91

MyClass object, 95

MyOtherClass class, 105, 107

■ N
name attribute, 301

new keyword, 88

next elements, hierarchy selectors in jQuery for
DOM elements, 14–15

.next() method, 30–31

.nextAll() method, 31

.nextUntil() method, 31–32

nonpublic application files, for events calendar,
121

:not() method, 16, 27

:nth-child() method, 20

■ O
object literals, 243, 246–247

object-oriented programming (OOP)

classes

creating, 88–89

defining methods, 90–98

defining properties, 89–90

differences from objects, 88

and objects, 87–112

using inheritance, 99–103

DocBlocks, commenting with, 110–112

methods, visibility of, 103–110

objects

and classes, 87–112

differences from classes, 88

vs. procedural code

better organization, 117

ease of implementation, 113–117

easier maintenance, 117–118

OOP approach, 115–116

overview, 112

procedural approach, 113–114

properties, visibility of, 103–110

objects

and classes, 87–112

differences from classes, 88

:odd filter, 16, 20

odd or even elements, basic filters in jQuery for
DOM elements, 16

.one() method, 76

OOP. See object-oriented programming

.outerHeight() method, 62

.outerWidth() method, 62

overlay, adding effect to modal window, 257

■ P
<p> tag, 11

pairs variable, 275

parent elements, content filters in jQuery for
DOM elements, 18

:parent filter, 18

parent keyword, 102

.parent() method, 33

■ INDEX

375

.parents() method, 33

.parentsUntil() method, 34

:password filter, 22

password protection

database table setup, 199

limiting display of components

admin options method, 224–225

disallowing access to event creation,
228–229

event options method, 226–228

only logged in users can delete events,
229

overview, 223

logging out

button for, 218–219

form submission handling, 221–222

method to process, 220

login credentials class

defining, 202

form submission handling, 213–218

method to check, 203–213

method to create salted hashes, 207–209

test method for salted hashes, 210–212

user to test administrative access, 212–
213

login form, 200–201

pattern modifiers, regular expressions, 316–317

PCRE (Perl-Compatible Regular Expression),
311

php-jquery_example database, 125, 199, 213

phpMyAdmin, 124

plugins

allowing custom aliases in, 345–346

creating

default options publicly accessible, 351–
352

helper method publicly accessible, 354–
355

maintaining chainability, 353

modifying each matched element, 356

properly named file, 351

file naming conventions for, 348

implementing

including file, 357

initializing on set of elements, 358–360

plus signs, 276

plusOne() static method, 108

POST method, 247, 251, 271

preg_match() method, 333

preg_replace() function, 313–314, 316, 318

.prepend() method, 40–44

.prependTo() method, 44–45

.prev() method, 32

.prevAll() method, 32

.preventDefault() method, 241

.prevUntil() method, 32

private visibility

keywords, 103, 107

of methods, 107–108

of properties, 107–108

procedural code, vs. object-oriented
programming

better organization, 117

ease of implementation, 112–116

easier maintenance, 117–118

OOP approach, 115–116

overview, 112

procedural approach, 113–114

processForm() method, 176, 179, 287, 334

process.inc.php file, 179, 213, 221, 248, 250

processLogout() method, 220

progressive enhancements, with jQuery, 235–
236

properties

defining class, 89–90

■ INDEX

376

setting in events calendar constructor, 134–
136

visibility of

private, 107–108

public, 103–106

static, 108–110

protected visibility keyword, 103–104

public

files for events calendar, 120–121

visibility of methods, 103–106

visibility of properties, 103–106

public folder, 120–124, 133, 145, 171, 195

public keyword, 89

public visibility keyword, 103

■ Q
question mark, 242

■ R
:radio filter, 22

rainbow tables, 207–208

.ready() method, 72–73

regex.php file, 312–314, 316, 318, 320, 324, 328,
330

regular expressions

alternation, 324

backreferences, 318–319

basic syntax, 311–315

beginning of string, 324

character classes, 320–323

end of string, 324

examples, 326–327

extracting query string with, modal window
for event data, 241–243

form validation with, 311–327

optional items, 325

pattern modifiers, 316–317

vs. regular string replacement, 314–315

repetition operators, 323–324

replacing text with, 313–314

word boundaries, 323

.remove() method, 52–53

.removeAttr() method, 54

.removeClass() method, 59

removeevent, 304

repetition operators, regular expressions, 323–
324

.replace() method, 241–242

replacing text, with regular expressions, 313–
314

result sets, methods of jQuery for, 62–64

■ S
salted hashes

method to create, 207–209

test method for, 210–212

salted passwords, 207

scope resolution operator (::), 102

.scroll() method, 72

SDKs (software development kits), 110

SELECT query, 137

selected form elements, form filters in jQuery
for DOM elements, 23

selected state, 23

selectors, for selecting DOM elements in jQuery

basic, 11–13

hierarchy, 13–15

.serialize() method, 269–270

serializing, form data, 270

server-side date validation

adding method to Calendar class, 333

■ INDEX

377

overview, 328

regex pattern to validate dates, 328–333

returning error if does not validate, 334–337

service attacks, denial of, 208

.setMinutes() method, 281

Shiflett, Chris, 171

shorthand class, 331

.show() method, 65–66

sibling elements, hierarchy selectors in jQuery
for DOM elements, 15

.siblings() method, 32

sleep() function, 211

.slice() method, 28–29

.slideDown() method, 67

.slideToggle() method, 67

.slideUp() method, 67

software development kits (SDKs), 110

.split() method, 275

SQL tab, phpMyAdmin, 124, 212

start variable, 339

static keyword, 103

static visibility, of methods and properties, 108–
110

.stop() method, 70

str_ireplace() function, 316

str_replace() function, 313–314, 316, 318–319

String() method, 282

string replacement, vs. regular expressions,
314–315

style.css file, 155

stylesheet, for elements created by jQuery, 238–
239

Submit button, 284, 301, 305, 339

:submit filter, 22

submitVal variable, 301

syntax, for regular expressions, 311–315

sys folder, 120–121, 124, 127

■ T
tag type, basic selectors in jQuery for DOM

elements, 11

target property, 291

testing folder, 8, 88

test.php file, 88–89, 210, 212–213

testSaltedHash() method, 210, 212–213

:text filter, 22

.text() method, 56–57

this keyword, 242, 301

timezone inconsistencies, 281

today class, 146

.toggle() method, 76–77

.toggleClass() method, 59–60

tokens, adding to forms, 169–170

.trigger() method, 77

■ U
.unbind() method, 75

.unload() method, 73

unset() function, 95

.unwrap() method, 48

UPDATE statement, 176

urldecode function, 276

user interface enhancements with jQuery

Calendar app

JavaScript initialization file for, 237

overview, 236

stylesheet for elements created by
jQuery, 238–239

modal window for event data

adding active class, 241

adding effects to, 254–262

binding function to click event, 240

Close button, 253–254

creating, 243–245

■ INDEX

378

extracting query string with regular
expressions, 241–243

overview, 240

preventing default action, 240–241

retrieve and display with AJAX, 247–252

overview, 235

progressive enhancements with, 235–236

users table, 199, 205, 213

user-supplied options, 347

utility functions, 246

■ V
.val() method, 57–58, 301

val variable, 275

validDate() method, 339, 346, 350, 352

validDate plugin, 351, 357

valid-date.js file, 338, 345–346, 348

view.php file, 121, 164–165, 171, 185, 188, 241

visibility

of methods

private, 107–108

public, 103–106

static, 108–110

of properties

private, 107–108

public, 103–106

static, 108–110

:visible filter, 19

visual effects, adding to modal window

adding an overlay, 257

fade in, 257

fade out, 255–256

overview, 254

■ W
web pages, including jQuery in, 7–8

web root folders, 120

WHERE clause, 137

WHERE...BETWEEN clause, 137

.width() method, 61

word boundaries, regular expressions, 323

.wrap() method, 46–47

.wrapAll() method, 49–50

.wrapInner() method, 51

■ X
XAMPP Control Panel, 7

XAMPP folder, 7

■ Y
Yes, Delete It button, 197

■ Z
zoom method, 354, 356

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part 1: Getting Comfortable with jQuery
	Introducing jQuery
	Choosing jQuery over JavaScript
	Understanding JavaScript Libraries
	Understanding the Benefits of jQuery
	Understanding the History of jQuery

	Setting Up a Testing Environment
	Installing Firefox
	Installing Firebug

	Including jQuery in Web Pages
	Including a Downloaded Copy of the jQuery Library
	Including a Remotely Hosted Copy of the jQuery Library
	Using the Google AJAX Libraries API

	Setting up a Test File
	Introducing the jQuery Function ($)
	Selecting DOM Elements Using CSS Syntax
	Basic Selectors
	Hierarchy Selectors
	Basic Filters
	Content Filters
	Visibility Filters
	Attribute Filters
	Child Filters
	Form Filters

	Summary

	Common jQuery Actions and Methods
	Understanding the Basic Behavior of jQuery Scripts
	Understanding jQuery Methods
	Traversing DOM Elements
	.eq()
	.filter() and .not()
	.first() and .last()
	.has()
	.is()
	.slice()
	.children()
	.closest()
	.find()
	.next(), .nextAll(), and .nextUntil()
	.prev(), .prevAll(), and .prevUntil()
	.siblings()
	.parent()
	.parents() and .parentsUntil()
	.add()
	.andSelf()
	.contents()
	.end()
	Creating and Inserting DOM Elements
	Creating New DOM Elements
	Inserting New Elements into the DOM
	.remove() and .detach()
	Accessing and Modifying CSS and Attributes
	.attr()
	.removeAttr()
	.css()
	.val()
	.data()
	.addClass(), .removeClass(), and .toggleClass()
	.hasClass()
	.height() and .width()
	.innerHeight(), .innerWidth(), .outerHeight(), and .outerWidth()
	Affecting Result Sets
	.map() and .each()
	Using Animation and Other Effects
	.show() and .hide()
	.fadeIn(), .fadeOut(), and .fadeTo()
	.slideUp(), .slideDown(), and .slideToggle()
	.animate()
	.delay()
	.stop()
	Handling Events
	Browser Events
	Handling Document Loading Events
	Handling Event Attachment
	Shortcut Event Methods
	Using AJAX Controls
	$.ajax()
	$.ajaxSetup()
	Using Shorthand AJAX Methods

	Summary

	Part 2: Getting Into Advanced PHP Programming
	Object-Oriented Programming
	Understanding Object-Oriented Programming
	Understanding Objects and Classes
	Recognizing the Differences Between Objects and Classes
	Structuring Classes
	Defining Class Properties
	Defining Class Methods
	Using Constructors and Destructors
	Converting to a String
	Using Class Inheritance
	Overwriting Inherited Properties and Methods
	Preserving Original Method Functionality While Overwriting Methods
	Assigning the Visibility of Properties and Methods
	Public Properties and Methods
	Protected Properties and Methods
	Private Properties and Methods
	Static Properties and Methods
	Commenting with DocBlocks

	Comparing Object-Oriented and Procedural Code
	Ease of Implementation
	The Procedural Approach
	The OOP Approach
	Better Organization
	Easier Maintenance

	Summary

	Build an Events Calendar
	Planning the Calendar
	Defining the Database Structure
	Creating the Class Map
	Planning the Application’s Folder Structure
	Public Files
	Nonpublic Application Files
	Modifying the Development Environment
	Local Development
	Remote Development

	Building the Calendar
	Creating the Database
	Connecting to the Database with a Class
	Creating the Class Wrapper
	Adding Class Properties
	Building the Constructor
	Checking the Database Connection
	Creating an Initialization File
	Creating an Index File to Pull It All Together
	Setting Basic Properties
	Loading Events Data
	Creating an Array of Event Objects for Use in the Calendar
	Creating an Event Class
	Creating the Method to Store Event Objects in an Array
	Outputting HTML to Display the Calendar and Events
	Modifying the Index File
	Building the Calendar
	Displaying Events in the Calendar
	Making the Calendar Look Like a Calendar
	Creating the Common Files—Header and Footer
	Adding the Files to the Index
	Outputing HTML to Display Full Event Descriptions
	Creating a Method to Format Single Event Data
	Creating a Method to Generate Markup
	Creating a New File to Display Full Events

	Summary

	Add Controls to Create, Edit, and Delete Events
	Generating a Form to Create or Edit Events
	Adding a Token to the Form
	Creating a File to Display the Form
	Adding a New Stylesheet for Administrative Features

	Saving New Events in the Database
	Adding a Processing File to Call the Processing Method
	Adding a Button to the Main View to Create New Events

	Adding Edit Controls to the Full Event View
	Modifying the Full Event Display Method to Show Admin Controls
	Adding the Admin Stylesheet to the Full Event View Page

	Deleting Events
	Generating a Delete Button
	Creating a Method to Require Confirmation
	Creating a File to Display the Confirmation Form

	Summary

	Password Protecting Sensitive Actions and Areas
	Building the Admin Table in the Database
	Building a File to Display a Login Form
	Creating the Admin Class
	Defining the Class
	Building a Method to Check the Login Credentials
	Building a Method to Create Salted Hashes
	Creating a Test Method for Salted Hashes
	Creating a User to Test Administrative Access
	Modifying the App to Handle the Login Form Submission

	Allowing the User to Log Out
	Adding a Log Out Button to the Calendar
	Creating a Method to Process the Logout
	Modifying the App to Handle the User Logout

	Displaying Admin Tools Only to Administrators
	Showing Admin Options to Administrators
	Modifying the General Admin Options Method
	Modifying the Event Options Method
	Limiting Access to Administrative Pages
	Disallowing Access to the Event Creation Form Without Login
	Ensuring Only Logged In Users Can Delete Events

	Summary

	Part 3: Combining jQuery with PHP Applications
	Enhancing the User Interface with jQuery
	Adding Progressive Enhancements with jQuery
	Setting Progressive Enhancement Goals

	Include jQuery in the Calendar App
	Create a JavaScript Initialization File
	Include the Initialization File in the Application
	Ensuring the Document Is Ready Before Script Execution
	Creating a New Stylesheet for Elements Created by jQuery
	Including the Stylesheet in the Index File

	Creating a Modal Window for Event Data
	Binding a Function to the Click Event of Title Links
	Preventing the Default Action and Adding an Active Class
	Extracting the Query String with Regular Expressions
	Using the Lazy Approach: String-Based Replacement
	Adopting a Better Solution: Regular Expressions
	Incorporating a Regular Expression into a Script
	Creating a Modal Window
	Creating the Utility Function to Check for a Modal Window
	Calling the Utility Function from the Event Handler
	Retrieve and Display Event Information with AJAX
	Creating a File to Handle AJAX Requests
	Loading Event Data Using AJAX
	Add a Close Button
	Add Effects to the Creation and Destruction of the Modal Window
	Fade Out the Modal Window
	Adding an Overlay and Fade in the Modal Window

	Summary

	Part 4: Advancing jQuery and PHP
	Performing Form Validation with Regular Expressions
	Getting Comfortable with Regular Expressions
	Understanding Basic Regular Expression Syntax
	Setting up a Test File
	Replacing Text with Regexes
	Choosing Regexes vs. Regular String Replacement
	Drilling Down on the Basics of Pattern Modifiers
	Getting Fancy with Backreferences
	Matching Character Classes
	Matching Any Character Except...
	Using Character Class Shorthand
	Finding Word Boundaries
	Using Repetition Operators
	Detecting the Beginning or End of a String
	Using Alternation
	Using Optional Items
	Putting It All Together

	Adding Server-Side Date Validation
	Defining the Regex Pattern to Validate Dates
	Setting up Test Data
	Matching the Date Format
	Adding a Validation Method to the Calendar Class
	Returning an Error if the Dates Don’t Validate

	Adding Client-Side Date Validation
	Creating a New JavaScript File to Validate the Date String
	Including the New File in the Footer
	Preventing the Form Submission if Validation Fails

	Summary

	Extending jQuery
	Adding Functions to jQuery
	Adding Your Date Validation Function to jQuery
	Allowing Custom Aliases in jQuery Plugins
	Attaching the Function to the jQuery Object
	Allowing Configurable Options
	Extending Default Options with User-Supplied Options
	Performing Validation and Returning a Value
	Conforming to jQuery Plugin File Naming Conventions
	Modifying the Include Script
	Modifying the Initialization Script

	Adding Methods to jQuery
	Building Your Plugin
	Creating a Properly Named Plugin File
	Providing Publicly Accessible Default Options
	Maintaining Chainability
	Creating a Publicly Accessible Helper Method
	Modifying Each Matched Element
	Implementing Your Plugin
	Including the Plugin File
	Initializing the Plugin on a Set of Elements

	Summary

	Index

